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Overview 
The purpose of the Innovations in Science Map, Assessment, and Reporting Technologies (I-
SMART) project is to improve science achievement and progress across grades for students 
with significant cognitive disabilities who participate in alternate assessments and for students 
with or without disabilities who are not meeting grade-level standards in science. The project 
builds from the Dynamic Learning Maps® (DLM®) Science Alternate Assessment System but 
extends assessments to align to learning map models in science. This report describes selected 
project activities associated with Goal 2: Design, develop, and evaluate assessments that 
incorporate science disciplinary content and science and engineering practices in highly 
engaging, universally designed, technology-delivered formats. This report focuses on pilot 
studies conducted to evaluate the new assessments and teacher and student experiences with 
the assessments. For information on the I-SMART learning map models (Goal 1) or the 
assessment purpose, framework, and design and development process (earlier Goal 2 
activities), please see Developing and Evaluating Learning Map Models in Science: Evidence 
from the I-SMART Project and Designing, Developing, and Evaluating Innovative Science 
Assessments: Evidence from the I-SMART project, respectively.  
 
Introduction 
Science content has traditionally been taught as a collection of facts, without deep attention to 
connecting concepts, constructing knowledge from past experiences, or integration of science 
practices (DeBoer, 2014; NGSS Lead States, 2013). In 2012, A Framework for K-12 Science 
Education (National Research Council, 2012) introduced a new model of science with three 
dimensions: disciplinary core ideas, science and engineering practices, and crosscutting 
concepts. The Framework, used as the foundation for the Next Generation Science Standards 
(NGSS), changes the emphasis from presenting scientific inquiry as a separate topic to a 
routine application of science and engineering practices and allows students to explore and 
demonstrate understanding of concepts. The science and engineering practices overlap with 
and provide opportunities to strengthen literacy and mathematics knowledge (Stage et al., 
2013). Students must learn to apply science concepts across multiple contexts to solve 
problems, demonstrate conceptual understanding, and learn science vocabulary in order to 
meet the NGSS expectations.  
 
Organized learning models such as learning progressions and learning maps in science have 
promise for supporting NGSS-based instruction and assessment. These organized learning 
models are designed to represent targeted skills and prerequisite concepts or learning 
experiences that are important in developing conceptual understanding (Alonzo & Gotwals, 
2012; Corcoran et al., 2009). Additional learning models are needed to address content in the 
new NGSS-based standards and to support a new generation of science assessments. I-
SMART learning map models have been designed to fill this gap. 
 
Students with significant cognitive disabilities, and students with or without disabilities who 
perform substantially below grade level, require innovative assessments to meet NGSS 
expectations. The I-SMART project developed science neighborhood maps (Goal 1) that 
represent knowledge, skills, and understandings that describe pathways students could take to 
learn the science performance expectations for students with significant cognitive disabilities 
(see Swinburne Romine et al., 2018). Those performance expectations are called Essential 
Elements (EEs). The neighborhood maps provided a structure from which assessments were 
built (Goal 2 [see Karvonen et al., 2020]) that incorporated science disciplinary content and 
science and engineering practices into engaging, universally designed, technology-delivered 
formats. Assessments are comprised of testlets, short groups of items that share a context and 
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an engagement activity. Testlets measure nodes (observable and distinct knowledge or skills) 
on the maps. I-SMART testlets are designed to be suitable for a broad population of students. 
Furthermore, I-SMART testlets are designed to be of high interest and engaging, supportive of 
student decision-making and self-regulation, and aligned to instructional practices.  
 
Pilot Study Goals and Research Questions 
One of the culminating objectives of Goal 2 of the I-SMART project is to have a set of testlets 
that could be models for a future assessment system along with a scoring model that supports 
reporting of student mastery of nodes in I-SMART neighborhood maps associated with several 
EEs. As such, the I-SMART pilot study, conducted in the winter and fall of 2019, evaluated the I-
SMART testlets, including item quality, item difficulty, and impact of item features on 
performance. The I-SMART pilot study provided data to select a final scoring model. The pilot 
study also gathered data on how students engaged with the testlets to inform response process 
patterns as well as teachers’ perceptions of the assessment. The specific research questions 
included the following:  

1. How do item and testlet features impact item and testlet performance?  
2. Which type of psychometric scoring model is optimal for the student response data 

collected from the assessments?  
3. Do empirical data support the structure of the learning map models? 
4. What are students’ and teachers’ perceptions of students’ experiences with the new 

testlets and how do teacher perceptions of testlet difficultly align with student 
performance?  
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I-SMART Assessment Design, Pilot Design & Administration  
This section outlines the I-SMART assessment design, including a description of the learning 
map neighborhoods, testlet design, the pilot study design, pilot administration, and participant 
descriptions, including student and teacher demographics.  
 
Assessment Design 
The I-SMART project evaluated assessment designs intended to serve a primary student 
population: students with the most significant cognitive disabilities who are eligible to take the 
Dynamic Learning Maps® (DLM®) alternate assessment in their state, and a secondary student 
population: students who are performing significantly below grade level in science but do not 
qualify to take the alternate assessment in their state. The secondary population may include 
students with or without disabilities. While the two populations are expected to achieve different 
grade-level expectations based on grade-level general or extended content standards, the 
project evaluated assessment designs for both populations using items closely related to the 
content of students’ science instruction. 
 
Learning Map Neighborhoods 
At the foundation of the I-SMART assessment design are the learning map models that consist 
of a set of “map neighborhoods.” Learning map neighborhoods show multiple pathways by 
which students develop multidimensional science knowledge, skills, and understandings (KSUs) 
on their way to, and beyond, mastery of extended content standards called Essential Elements 
(EEs). EEs align to the multidimensional performance expectations in the Next Generation 
Science Standards (NGSS) in three grades/grade bands: elementary (Grade 5), middle school 
(Grades 6–8) and high school (Grades 9–12). Neighborhood maps developed for the I-SMART 
project each represent one EE. I-SMART EEs encompass disciplinary core ideas and science 
and engineering practices. Two EEs were selected for each grade band to be included in the I-
SMART pilot study. Depending on the grade band, EEs measure two of the three available 
science domains: physical science, life science, and earth and space science. Figure 1 displays 
an example learning map neighborhood for a single EE. 
 
Within each EE’s neighborhood map, groups of nodes are selected to represent three to four 
different levels of KSU complexity known as linkage levels: Initial, Distal (high school only), 
Precursor, and Target. See Developing and Evaluating Learning Map Models in Science: 
Evidence From the I-SMART project for more details on I-SMART map neighborhoods 
(Swinburne Romine et al., 2018). Linkage levels are used to assign students to test content that 
most closely aligns to their level of KSUs; additional information on linkage levels and test form 
assignment can be found in the Pilot Study Design section of this report. 
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Figure 1 

The Learning Map Model for EE.5.LS2-1 
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Testlet Structure and Design 
I-SMART testlets incorporate principles of Universal Design for Learning (UDL) to provide 
multiple means of engagement, representation, and action and expression (CAST, 2018). 
Options to promote UDL principles occur throughout the assessment based on the linkage level. 
 
During the I-SMART pilot study, 34 testlets were administered. For students testing at the initial 
and precursor linkage levels, choice items were presented, which allowed students to pick a 
context for the academic items to be presented in (e.g., pick a location, animal, or character). 
The student’s selection on the choice item dictated which set of science items the student 
received, referred to in this report as the “choice path.” Subsequent science items were parallel 
for each choice path, differing only in the context.  
 
A total of 14 testlets at the Initial, Distal, and Precursor linkage levels contained a choice item 
that branched students into one of two paths. These choice-based testlets were treated as two 
distinct testlets, yielding 28 testlets. There were two choices for two EEs at two linkage levels for 
the elementary and middle grade bands (16 testlets) and two choices for the two EEs at three 
linkage levels for the high school grade band (12 testlets). The six testlets at the Target level 
(two EEs and three grade bands) did not include a choice item and instead used an expanded 
science narrative (described below) to promote engagement.  
 
The I-SMART testlets were based on nodes for one linkage level of one EE and included 
multiple-choice items for the student to complete. Testlets contained a science narrative, which 
provided a theoretical scenario that a student could use to interpret and explore concepts 
throughout the testlet. The narrative is intended to promote student engagement, activate prior 
knowledge, and provide appropriate background knowledge if needed for the assessed 
concepts. Narratives described a student investigating a science phenomenon and were 
grounded either in familiar context or in an experience found in a typical classroom. After the 
science narrative, testlets at the Precursor and Target linkage levels presented an unscored 
wonder question, which addressed a key concept in the science narrative. To determine 
whether the student’s initial knowledge changed after completing the items in the testlet, the 
same wonder question was posed at the end of the testlet. Wonder questions used principles of 
UDL by providing an option for self-regulation. Precursor and Target linkage level testlets 
included unscored think about it questions to support students’ planning and engagement. 
These questions asked students, “What should you do next?” or “How would you find this 
answer?”1 Precursor, Distal, and Target level academic testlets included a student self-
evaluation as the last item of the testlet. The self-evaluation item asked students if they felt 
happy, neutral, or sad regarding their performance on the testlet (see Figure 2). See Designing, 
Developing, and Evaluating Innovative Science Assessments: Evidence From the I-SMART 
Project for more details regarding I-SMART testlet design (Karvonen et al., 2020).  
 
 

 
1 These items had no answer options and are not evaluated in this report. 
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Figure 2 

Student Self-Evaluation 
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Figure 3 displays a chart of the I-SMART testlet structure beginning at the choice item, followed 
by the two possible choice paths. 
 
Figure 3 

I-SMART Testlet Structure for Initial, Precursor, and Distal Linkage Levels  

 
Each testlet measured four nodes in a cluster or mini-progression. Adjacent linkage levels had 
one common (overlapping) node. For example, the least complex node in the Precursor linkage 
level was the same as the most complex node in the Distal linkage level. Each node was 
measured by three to six items. Specifically, nodes that did not overlap across adjacent linkage 
levels (i.e., non-overlapping nodes) were each measured by three items, whereas nodes that 
were shared across adjacent levels (i.e., overlapping nodes) were each measured by four to six 
items.2 In total, each testlet comprised 13 to 18 items. For example, as shown in Figure 4, for 
the elementary grade band, two EEs (EE.5.LS2-1 and EE.5.PS1-3) contained three unique 
nodes (measured by three items each or total of nine items) and one overlapping node 
(measured by four to six items), for a total of 13 to 15 items for each testlet at the Initial and 
Target linkage levels. The Precursor testlets for the two elementary grade band EEs contained 
two unique nodes (measured by three items each or a total of six items) and two overlapping 
nodes (measured by eight to twelve items).

 
2 The additional items for the overlapping nodes were needed to ensure adequate data were collected to 
estimate the relationships between linkage levels. 

Choice Item

Testlet 1

1. Opening 
wonder question 2. Science content

3. Closing wonder 
question 4. Self-evaluation

Testlet 2

1. Opening 
wonder question 2. Science content

3. Closing wonder 
question 4. Self-evaluation
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Figure 4 

Example I-SMART Testlet Specifications for Elementary 

 
Note. The figure represents the testlet design for the elementary grade band. The middle school 
grade band had the same design, but the high school grade band contained an additional 
linkage level (Distal) between the Initial and Precursor level.  
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Pilot Study Design  
 
Student Populations 
Due to differences in pilot design for the primary and secondary populations, the approaches 
are described separately for each group. Accessibility supports were available for both 
populations and are described below. 
 
Primary Population 
The primary population was students who are eligible for DLM alternate assessments. Students 
were assigned to pilot test forms by matching the testlet linkage levels with student complexity 
bands that were determined using responses to a teacher survey about students who take the 
DLM alternate assessments. The survey included questions about students’ science and 
expressive communication skills and is administered or updated at least annually. The purpose 
of the complexity bands is to provide students with test content that most closely aligns to their 
skill level to provide them the greatest opportunity to demonstrate what they know and can do. 
Because the primary population was a subset of students who already take DLM assessments, 
the survey responses provided for their participation in the DLM assessment program also 
applied to the I-SMART pilot. 
 
Students were categorized into one of four complexity bands based on their teacher’s 
responses to the survey: Foundational, Band 1, Band 2, and Band 3. Once a student was 
assigned to a complexity band, the online assessment system assigned a test form 
corresponding to the band. Each form consisted of testlets at two adjacent linkage levels, one at 
the student’s current skill level and one either higher or lower than their current skill level. Table 
1 shows the correspondence between complexity bands and testlet linkage levels. 
 
Table 1 

Complexity Band and Testlet Level Assignments for Primary Population 

Grade 
band 

Science band (student) Initial Distal Precursor Target 

EL F or B1 X  X  
EL B2 or B3   X X 
MS F or B1 X  X  
MS B2 or B3   X X 
HS F X X   
HS B1  X X  
HS B2 or B3   X X 

Note. EL = elementary; MS = middle school; HS = high school; F = Foundational; B1 = Band 1; 
B2 = Band 2; B3 = Band 3. Distal level only available at the HS level. 
 
Two test forms were available for each complexity band, so students in a complexity band were 
randomly assigned to take one of the two forms. Table 2 displays the possible form 
assignments. 
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Table 2 

Test Form Assignments for Primary Population Students 

Grade band Science band Linkage levels Form* Testlet** 

EL F & B1 Initial 
Precursor 1 001 

EL F & B1 Initial 
Precursor 1 002 

EL F & B1 Initial 
Precursor 2 004 

EL F & B1 Initial 
Precursor 2 005 

EL B2 & B3 Precursor 
Target 3 002 

EL B2 & B3 Precursor 
Target 3 003 

EL B2 & B3 Precursor 
Target 4 005 

EL B2 & B3 Precursor 
Target 4 006 

MS F & B1 Initial 
Precursor 5 007 

MS F & B1 Initial 
Precursor 5 008 

MS F & B1 Initial 
Precursor 6 010 

MS F & B1 Initial 
Precursor 6 011 

MS B2 & B3 Precursor 
Target 7 008 

MS B2 & B3 Precursor 
Target 7 009 

MS B2 & B3 Precursor 
Target 8 011 

MS B2 & B3 Precursor 
Target 8 012 

HS F Initial 
Distal 9 013 

HS F Initial 
Distal 9 014 

HS F Initial 
Distal 10 017 

HS F Initial 
Distal 10 018 

HS B1 Distal 
Precursor 11 014 

HS B1 Distal 
Precursor 11 015 

HS B1 Distal 12 018 
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Grade band Science band Linkage levels Form* Testlet** 
Precursor 

HS B1 Distal 
Precursor 12 019 

HS B2 & B3 Precursor 
Target 13 015 

HS B2 & B3 Precursor 
Target 13 016 

HS B2 & B3 Precursor 
Target 14 019 

HS B2 & B3 Precursor 
Target 14 020 

Note. EL = elementary; MS = middle school; HS = high school; F = Foundational; B1 = Band 1; 
B2 = Band 2; B3 = Band 3. 
* Available forms within each grade and complexity band were randomly assigned to students. 
** Each Initial- and Precursor-level testlet consisted of two choice paths, for a total of 34 unique 
testlets across all linkage levels.  
 
In addition to the student self-evaluation question described above, two teacher survey 
questions were administered after each testlet. One question asked teachers about the amount 
of instructional time spent on the tested EE and the other asked about the teacher’s perception 
of the student’s mastery of the EE.  
 
After the student completed both testlets and all embedded survey questions were answered, 
teachers completed a slightly longer survey about the student’s overall experiences with the 
assessment. The survey was administered in the assessment platform and included questions 
about student engagement, interaction with the tests as intended, ease of use, familiarity with 
devices and accessibility features, testlet difficulty, and social-emotional factors that may have 
impacted the student’s responses to test items. Appendix A shows an example pilot test 
experience for a student from the primary population in fifth grade. The Evaluation of Student 
Experiences section of the report provides results from the teacher and student surveys.  
 
Secondary Population 
The secondary population was students with or without disabilities who do not meet grade-level 
expectations in science. The testlets for the secondary population were set up to be 
administered through the same online platform but with a user interface designed for students 
who do not take alternate assessments.  

The available test content for students in this population was limited to the Target level testlets 
at each grade band. The testlet content varied somewhat from the versions designed for the 
primary population although the items were nearly identical. The pilot test consisted of two 
Target level testlets, one per EE. 
 
Students in the secondary population were assigned to pilot test forms using information from a 
short teacher survey. This survey, which was separate from the DLM teacher survey described 
above for the primary population, contained questions about students’ science academic skills 
and mastery level of available test content. Depending on their academic skills and mastery 
levels, students could have been assigned to test content at a different grade level than their 
current enrolled grade. Secondary population students were to be assigned two Target level 
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testlets, one for each of the two EEs, at a grade level that was most closely aligned to their 
current skill level as reported on this survey. 
 
After students had completed the testlets, teachers were to complete a second survey within the 
assessment platform about the student’s experiences with the assessment. This survey was the 
same as the one that teachers completed for the primary population. Appendix A shows an 
example pilot test experience for a student from the secondary population in eighth grade. 
 
Available Accessibility Supports 
For the primary population, accessibility supports for the I-SMART pilot administration included 
supports provided in the Kite® technology platform (used to administer the DLM assessments), 
supports that required additional materials, and supports provided by the test administrator. Test 
administrators trained on the appropriate selection and use of the supports selected from the 
various settings options in the Personal Needs and Preferences (PNP) profile (which houses 
student-specific information that adjusts settings in the testing platform). Table 3 displays the 
available accessibility supports.  
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Table 3 

Available Accessibility Supports 

Supports provided in Kite Supports requiring 
additional materials 

Supports provided by the test 
administrator 

Spoken audio Individualized 
manipulatives 

Human read aloud 

Magnification Calculator Sign interpretation of text 
Color contrast Single-switch system Language translation of text 
Overlay color Two-switch system Test administrator entering 

response for student 
Invert color choice  Partner-assisted scanning  

 
In addition to the supports provided in Kite listed in Table 3, the secondary population also had 
access to additional tools and features in the Kite system that the student could turn on/off 
during test administration. These tools and features included: highlighter/striker/eraser, guide 
line, mark for review, notes, search, tags, sketch pad, and masking. 
 
Pilot Administration 
The first testing window took place in the winter 2019 (January 22 through March 1, 2019), and 
the second window took place in the fall of 2019 (November 5 through December 20, 2019). 
 
Recruitment and Inclusion Criteria 
Primary Population 
State education agency staff from I-SMART state partners, as well as DLM state partners, were 
asked to recruit teachers to participate in the pilot test. Participation included administering the 
assigned testlets to one or more eligible students and completing the embedded survey 
questions and a survey after administering the assessment. Student eligibility criteria included 
(1) enrollment in DLM assessments for the current school year and (2) receiving instruction in 
the two selected science EEs for that grade band during the year.  
 
Secondary Population 
Districts that agreed to participate for the primary population were also asked if they had 
teachers willing to participate for the secondary population (in some cases, the same teachers 
were responsible for both populations). Teacher participation included administering the 
assigned testlets to one or more eligible students and completing the survey after administering 
the assessment. The only student participation criterion was that the student could not be 
eligible to take DLM assessments. This criterion was confirmed via a survey question 
administered to the student’s teacher. 
 
Test Administrator Training 
Because the secondary population included students not eligible for alternate assessments, test 
administrators could have been unfamiliar with Kite Suite. Training and assistance were to be 
provided in the form of an administration manual, a website that served as a central hub of 
information about procedures, and service desk support. 
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Assessment Scoring 
Latent class analysis is the basis for the scoring model of the I-SMART assessment. For 
every node in each of the assessed linkage levels within each EE, a probability of mastery 
was calculated. The nodes were treated as the latent variables in the latent class analysis. 
Students were then classified as masters and non-masters of the assessed nodes based on 
posterior probabilities. A posterior probability greater than or equal to .80 was required for 
node mastery. Students could also be classified as masters of a node if they responded 
correctly to at least 80% of the items assessing the node. Detailed information about the 
scoring model is provided in the Psychometric Model section of this report. 

Participants 
While recruitment efforts were made, unfortunately, no students from the secondary population 
participated in the pilot studies.3 The following descriptions of participants and results only 
include students who participated from the primary population.  
 
The I-SMART pilot study involved a total of 2,144 student participants and 995 teachers from 
five states. Table 4 summarizes the number of students who tested on each EE at each linkage 
level. Table 5 displays counts of students by grade band and Science complexity band for each 
testing window. Tables 6–8 show the number of students and teachers per testing window, by 
state and by grade. Note that some students and teachers participated in both testing windows. 
Students and teachers were only counted once in the overall totals. 
 

 
3 Teachers who were interested in the pilot study reported lack of time as the main reason for not participating. 
Some information related to RQ4 (student reactions) is reported elsewhere on cognitive labs with testlet 
prototypes for the secondary population. See ismart.works.  
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Table 4 

Number of Students by Linkage Level and Essential Element 

Linkage level Essential Element n 
Initial 5.LS2-1.IP 150 
 5.PS1-3.IP 389 
 MS.LS2-2.IP 232 
 MS.PS1-2.IP 244 
 HS.ESS3-3.IP 129 
 HS.LS2-2.IP 107 
Distal (high school only) HS.ESS3-3.DP 281 
 HS.LS2-2.DP 350 
Precursor 5.LS2-1.PP 190 
 5.PS1-3.PP 484 
 MS.LS2-2.PP 324 
 MS.PS1-2.PP 344 
 HS.ESS3-3.PP 232 
 HS.LS2-2.PP 435 
Target 5.LS2-1.T 40 
 5.PS1-3.T 95 
 MS.LS2-2.T 93 
 MS.PS1-2.T 100 
 HS.ESS3-3.T 79 
 HS.LS2-2.T 191 

Note. Students were able to test on multiple linkage levels and Essential Elements. 
 
Table 5 

Number of Students by Grade Band and Science Complexity Band in Each Testing Window 

Grade band Science complexity band First window Second window 
Elementary school Foundational 105 95 
 Band 1 181 184 
 Band 2 66 61 
 Band 3 9 5 
Middle school Foundational 91 98 
 Band 1 163 144 
 Band 2 86 82 
 Band 3 24 12 
High school Foundational 132 113 
 Band 1 201 215 
 Band 2 111 102 
 Band 3 32 33 
Total  1,201 1,144 

 
Table 6 

Number of Students and Teachers by Testing Window 
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Testing window Students Teachers 
First 1,201 574 
Second 1,144 600 

 
Table 7 

Number of Students and Teachers by State and Testing Window 

State Students 
in first 

window 

Students 
in second 
window 

Teachers 
in first 

window 

Teachers 
in second 
window 

Overall 
students 

Overall 
teachers 

Maryland 0 14 0 7 14 7 
Missouri 1,118 1,121 516 589 2,038 926 
New York 36 0 26 0 36 26 
Oklahoma 47 1 32 1 48 33 
West Virginia 0 8 0 3 8 3 

 
Table 8 

Number of Students by Grade and Testing Window 

Grade Students 
in first 

window 

Students 
in second 
window 

Teachers 
in first 

window 

Teachers 
in second 
window 

Overall 
students 

Overall 
teachers 

Grade 3 43 51 32 37 94 63 
Grade 4 63 49 47 41 112 81 
Grade 5 255 245 183 192 499 341 
Grade 6 60 58 41 46 118 81 
Grade 7 58 40 44 34 98 76 
Grade 8 246 238 158 158 484 284 
Grade 9 65 80 48 58 145 99 
Grade 10 57 33 48 26 90 70 
Grade 11 250 256 162 170 506 296 
Grade 12 104 94 50 55 163 85 

 
Student Demographics 
The demographic characteristics of students who participated in the I-SMART pilot study are 
shown in Table 9. Nearly two thirds of the students were male (63.9%). While African American 
students made up 17.9% of the students, the majority of the students were white (74.6%). Most 
students were not of Hispanic ethnicity (94.3%) and were not English for Speakers of Other 
Languages (ESOL) eligible or monitored (97.8%). 
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Table 9 

Student Demographics by Testing Window  

Subgroup First 
window 

% Second 
window 

% Overall % 

Gender       
Female 430 35.8 411 35.9 774 36.1 
Male 771 64.2 733 64.1 1370 63.9 

Race       
White 871 72.5 883 77.2 1600 74.6 
African American 236 19.7 180 15.7 385 17.9 
Asian 27 2.2 33 2.9 57 2.6 
American Indian 15 1.2 7 0.6 21 1.0 
Alaska Native 0 0 1 0.1 1 0.1 
Two or more races 49 4.1 33 2.9 80 3.7 
Native Hawaiian or Pacific 

Islander 3 0.3 7 0.6 10 0.5 

Hispanic ethnicity       
No 1132 94.3 1082 94.6 2023 94.3 
Yes 69 5.7 62 5.4 122 5.7 

ESOL participation       
Not ESOL eligible or 

monitored 1175 97.8 1122 98.1 2096 97.8 

Title III funded 16 1.3 12 1.1 28 1.3 
Both Title III and state 

ESOL/bilingual funded 1 0.1 1 0.1 2 0.1 

Monitored ESOL student 4 0.3 3 0.3 7 0.3 
Eligible but not currently 

receiving services 1 0.1 1 0.1 2 0.1 

Receives services but not 
Title III or state funded 4 .33 5 0.4 9 0.4 

Note. ESOL = English for Speakers of Other Languages. 
 
Teacher Experience 
Teachers whose students participated in I-SMART had varying levels of experience with 
science and special education (see Table 10). Forty-five percent (n = 361) had between 0 and 5 
years of experience teaching science, while almost 49% (n = 393) had 0–10 years of 
experience teaching special education. Over half (57.5%; n = 462) had a Master’s degree.  
 
Table 10 

Teacher Experience (N = 803) 

Experience n % 
Science   

0–5 years 361 45.0 
6–10 years 162 20.2 
11–15 years 101 12.6 
16–20 years 69 8.6 
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21+ years 83 10.3 
No answer 27 3.4 

Special education   
0–5 years 200 24.9 
6–10 years 193 24.0 
11–15 years 137 17.1 
16–20 years 115 14.3 
21+ years 126 15.7 
No answer 32 4.0 

Highest degree earned   
Bachelor’s  333 41.5 
Master’s  462 57.5 
Doctorate 8 1.0 

  
Use of Accessibility Supports 
Table 11 shows the PNP profile selections for students who participated in the I-SMART pilot 
study. Teachers most often selected a human read aloud (89.5%) followed by test administrator 
enters responses for student (62.8%).  
 
Table 11 

I-SMART Personal Needs and Preferences Profile Selections  

Selection n % 
Human read aloud 1,918 89.5 
Test administrator enters 

responses for student 1,347 62.8 

Individualized manipulatives 876 40.9 
Calculator 440 20.5 
Color contrast 203 9.5 
Magnification 197 9.2 
Spoken audio 185 8.6 
Partner assisted scanning 122 5.7 
Alternate form–visual 

impairment 113 5.3 

Overlay color 102 4.8 
Single-switch system 75 3.5 
Invert color choice 73 3.4 
Two-switch system 52 2.4 
Sign interpretation of text 32 1.5 
Language translation of text 21 1.0 
Uncontracted braille 1 <1.0 
Total 5,757  

Note. Multiple selections were allowed, so totals add up to >100%.  
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Item and Testlet Performance 
The pilot study examined student performance on the I-SMART testlets through data regarding 
node mastery, administration time, performance on choice paths and wonder questions, and 
item level performance. 
 
Node Mastery 
As described in the Testlet Structure and Design section, each testlet measured a total of four 
nodes within a single Essential Element (EE) and linkage level. Across all testlets, the average 
nodes mastered on each testlet was 1.1 nodes, with a standard deviation of 1.4 nodes. 
Appendix D contains bar graphs for node mastery by linkage level, EE, grade band, and 
domain. Table 12 displays the average nodes mastered on each testlet by linkage level. The 
Initial linkage level contained the highest average nodes mastered (1.8), followed by Distal (1.1), 
Precursor (0.9), and Target (0.9). 
 
Table 12 

Average Nodes Mastered on Each Testlet by Linkage Level 

Linkage level n Average nodes 
mastered 

Standard 
deviation 

Initial 1,127 1.75 1.60 
Distal 562 1.05 1.08 
Precursor 1,871 0.87 1.22 
Target 577 0.85 1.05 

 
Table 13 displays the average nodes mastered on each testlet by EE. The MS.LS2-2 EE 
contained the highest average nodes mastered (1.7), while the HS.LS2-2 EE contained the 
lowest average nodes mastered (0.8).  
 
Table 13 

Average Nodes Mastered on Each Testlet by Essential Element 

Essential Element n Average nodes 
mastered 

Standard 
deviation 

5.LS2-1 
5.PS1-3 

190 
484 

0.92 
1.31 

1.17 
1.49 

MS.LS2-2 325 1.29 1.60 
MS.PS1-2 344 1.70 1.41 
HS.ESS3-3 
HS.LS2-2 

361 
542 

0.86 
0.79  

1.14 
1.04 

 
Table 14 displays the average nodes mastered on each testlet by grade band. The highest 
average nodes mastered per testlet was in the middle school grade band (1.5), followed by the 
elementary grade band (1.2) and the high school grade band (0.8). 
 



29 
 

Table 14 

Average Nodes Mastered on Each Testlet by Grade Band 

Grade band n Average nodes 
mastered 

Standard 
deviation 

Elementary 648 1.20 1.42 
Middle School 639 1.50 1.52 
High School 824 0.82 1.08 

 
Table 15 displays the average nodes mastered on each testlet by domain. Each testlet 
addressed one of three domains: physical science, life science, and earth and space science. 
The highest average nodes mastered per testlet was in the physical science domain (1.5), 
followed by life science (1.0) and earth and space science (0.9). 
 
Table 15 

Average Nodes Mastered on Each Testlet by Domain 

Domain n Average nodes 
mastered 

Standard 
deviation 

Physical science 1,656 1.47 1.47 
Life science  2,111 0.97 1.28 
Earth and space 

science  721 0.86 1.14 

 
Administration Time 
The I-SMART testlets included many features aimed at increasing student engagement (e.g., 
choice options; see the Testlet Structure and Design section for a complete description). We 
examined total testlet administration time and time to complete only the scored portion of the 
testlet to evaluate the impact of the testlet features across the first and second administrations. 
The distribution of total administration time is displayed in Table 16. Although there were few 
extreme values greater than an hour, most testlets were completed in less than 6 minutes. This 
was slightly longer than the reported administration time for Dynamic Learning Maps® (DLM®) 
Science assessments (2–3 minutes; DLM Consortium, 2019). This discrepancy was likely due 
to the additional content (i.e., choice items, wonder questions, self-evaluation) and greater 
number of items that are included in the I-SMART testlets. 
 
Table 16 

Distribution of Total Response Times per Testlet in Minutes 

Grade n Minimum Median Mean Maximum 25Q 75Q IQR 
Elementary 1,347 0.18 3.12 4.04 152.27 1.68 5.05 3.37 
Middle 
school 

1,333 0.27 3.17 3.88 60.15 1.77 5.10 3.33 

High 
school 

1,806 0.20 4.22 4.90 90.00 2.14 6.38 4.24 

Note. 25Q = lower quartile; 75Q = upper quartile; IQR = interquartile range.   
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The administration times for only the scored items measuring nodes were also collected. Table 
17 summarizes the distribution of time spent on the scored items measuring nodes, which 
excludes choice items, wonder questions, and students’ self-evaluations. The majority of 
students took around 4 minutes or less to complete the scored items measuring nodes. This 
was again in line with expectations based on DLM assessments, given that the I-SMART 
testlets contain more items than the DLM science testlets. 
 
Table 17 

Distribution of Response Times per Testlet in Minutes—Scored Items Measuring Nodes 

Grade n Minimum Median Mean Maximum 25Q 75Q IQR 
Elementary 1,347 0.07 2.53 3.18 133.23 1.36 3.98 2.62 
Middle 
school 

1,333 0.17 2.63 3.08 60.02 1.48 3.88 2.40 

High 
school 

1,804 0.10 3.58 4.15 67.05 1.78 5.45 3.67 

Note. 25Q = lower quartile; 75Q = upper quartile; IQR = interquartile range.  
 
The administration times for just wonder questions were also collected. Table 18 summarizes 
the distribution of time spent on wonder questions only. Students who skipped one or both 
wonder questions accounted for the very short times of less than 1 second. The majority of 
students spent less than 1 minute on the wonder questions. 
 
Table 18 

Distribution of Response Times per Testlet in Minutes—Wonder Questions Only 

Grade n Minimum Median Mean Maximum 25Q 75Q IQR 
Elementary 808 0.02 0.52 0.70 33.15 0.25 0.82 0.57 
Middle 
school 

858 0.02 0.62 0.75 45.00 0.23 0.93 0.70 

High 
school 

937 0.02 0.52 0.68 90.00 0.27 0.75 0.48 

Note. 25Q = lower quartile; 75Q = upper quartile; IQR = interquartile range.  
 
For testlets where students completed both wonder questions, the difference in time spent on 
the first wonder question and the second wonder question was calculated. Table 19 
summarizes the distribution of differences in time spent on the first wonder question compared 
to the second wonder question. On average, students spent more time on the first wonder 
question compared to the second wonder question. 
 
Table 19 

Distribution of Differences in Response Times Between First and Second Wonder Question 

Grade n Minimum Median Mean Maximum 25Q 75Q IQR 
Elementary 748 –31.15 0.03 0.04 12.60 –0.02 0.15 0.17 
Middle 
school 

774 –2.43 0.83 0.16 12.70 0.00 0.23 0.23 
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High 
school 

879 –4.30 0.50 0.08 3.27 0.00 0.17 0.17 

Note. 25Q = lower quartile; 75Q = upper quartile; IQR = interquartile range.  
 
Overall, testlet administration times starting from the choice item to the students’ self-evaluation 
took 4 minutes to complete on average, while scored items measuring nodes took 3 minutes on 
average, and wonder questions took close to 1 minute on average to complete. Most students 
spent more time answering the first wonder question than the second wonder question. 
 
Choice Items 
The choice items did not have a “correct option,” nor were they designed to demonstrate one 
option that was more or less “preferred” than the other. We evaluated the frequency with which 
students chose the first option versus the second. Of the 14 choice items, six were at the Initial 
level, two were at the Distal level, and six were at the Precursor level. Table 20 shows the 
distribution of choice item selections (Option 1 or Option 2) at each linkage level. For all three 
linkage levels, the majority of students selected the second option.  
 
Table 20 

Distribution of Students’ Choice Items Selections by Linkage Level 

Linkage level Choice n % 
Initial  1 570 45.6 
 2 681 54.4 
Distal  1 279 44.3 
 2 351 55.7 
Precursor 1 823 41.0 
 2 1,186 59.0 

 
Distribution of Choice Items by Linkage Level and Choice Items 
Table 21 shows the distribution of selections on choice items at each linkage level and 
preceding choice items. Distal Choice Item 8 had the smallest difference in percentage with a 
discrepancy of fewer than 2 points between beach and mountain. Eight choice items had a 
difference in percentage greater than 10 points. The largest difference in percentage was in 
Precursor Choice Item 11 (83% vs 17%). Some options were available across multiple testlets, 
such as park on Items 4 and 5. The park was slightly more preferred than house on Choice Item 
5 (3 points), but much less preferred than farm on Choice Item 4 (36 points). 
 
Table 21 

Distribution of Students’ Choice Items Selections by Linkage Level and Choice Item 

Linkage level Choice Item Choice Order n % 
Initial  1 Ocean 1 50 46.7 
  Forest 2 57 53.3 
 2 Park 1 46 35.7 
  Beach 2 83 64.3 
 3 Bear 1 66 44.0 
  Cat 2 84 56.0 
 4 Park 1 74 31.9 
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Linkage level Choice Item Choice Order n % 
  Farm 2 158 68.1 
 5 House 1 189 48.6 
  Park 2 200 51.4 
 6 School 1 145 59.4 
  House 2 99 40.6 
Distal  7 Whale 1 136 39.0 
  Tiger 2 213 61.0 
 8 Beach 1 143 50.9 
  Mountain 2 138 49.1 
Precursor 9 House 1 256 52.9 
  Park 2 228 47.1 
 10 Camping 1 120 51.7 
  Picnic 2 112 48.3 
 11 Bread 1 59 17.2 
  Cookies 2 285 82.8 
 12 Meadow 1 75 39.5 
  Pond 2 115 60.5 
 13 Pond 1 142 32.6 
  Forest 2 293 67.4 
 14 Lake 1 171 52.8 
  Arctic 2 153 47.2 

 
Student Performance on Choice Paths 
When students made a selection on a choice item, they were directed to a testlet with the 
chosen context. However, the scored items measuring nodes on the two choice items were the 
same. In other words, the context was the only difference. The choice paths were designed to 
assess the same four nodes in the same order, so the difficulty of the choice paths should be 
approximately the same. Student performance was expected to be roughly the same regardless 
of the chosen choice path. To determine whether student performance differed between choice 
paths, the average number of nodes students mastered on each testlet was calculated and is 
displayed in Table 22.4 Overall, students performed similarly on the different choice paths. The 
largest difference in average number of nodes mastered was for the Initial school testlet, where 
the average number of nodes mastered was 2.4 compared to the house testlet, which had an 
average of 1.1 nodes mastered per student (d = 0.9). 
 
Table 22 

Distribution of Students’ Choice Items Selections by Linkage Level  

Linkage 
level 

Choice Item Essential Element Choice Order n % Average 
nodes 

mastered 
Initial   1 HS.LS2-2.IP Ocean 1 50 46.7 1.1 
  HS.LS2-2.IP Forest 2 57 53.3 0.7 
  2 HS.ESS3-3.IP Park 1 46 35.7 0.8 
  HS.ESS3-3.IP Beach 2 83 64.3 0.6 

 
4 For a description of how node mastery was determined, see the section on the psychometric model in 
this report. 
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Linkage 
level 

Choice Item Essential Element Choice Order n % Average 
nodes 

mastered 
  3 5.LS2-1.IP Bear 1 66 44.0 1.5 
  5.LS2-1.IP Cat 2 84 56.0 1.3 
  4 MS.LS2-2.IP Park 1 74 31.9 2.3 
  MS.LS2-2.IP Farm 2 158 68.1 2.4 
  5 5.PS1-3.IP House 1 189 48.6 2.1 
  5.PS1-3.IP Park 2 200 51.4 2.0 
  6 MS.PS1-2.IP School 1 145 59.4 2.4 
  MS.PS1-2.IP House 2 99 40.6 1.1 
Distal   7 HS.LS2-2.DP Whale 1 136 39.0 1.0 
  HS.LS2-2.DP Tiger 2 213 61.0 1.2 
  8 HS.ESS3-3.DP Beach 1 143 50.9 1.1 
  HS.ESS3-3.DP Mountain 2 138 49.1 0.8 
Precursor  9 5.PS1-3.PP House 1 256 52.9 1.0 
  5.PS1-3.PP Park 2 228 47.1 0.6 
  10 HS.ESS3-3.PP Camping 1 120 51.7 0.9 
  HS.ESS3-3.PP Picnic 2 112 48.3 0.7 
  11 MS.PS1-2.PP Bread 1 59 17.2 1.6 
  MS.PS1-2.PP Cookies 2 285 82.8 1.9 
  12 5.LS2-1.PP Meadow 1 75 39.5 0.6 
  5.LS2-1.PP Pond 2 115 60.5 0.5 
  13 HS.LS2-2.PP Pond 1 142 32.6 0.3 
  HS.LS2-2.PP Forest 2 293 67.4 0.5 
  14 MS.LS2-2.PP Lake 1 171 52.8 0.4 
  MS.LS2-2.PP Arctic 2 153 47.2 0.9 
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The proportion of students who mastered each node was also calculated for each choice path. 
Appendix B displays the proportion of students mastering each node in a choice path. Each 
choice path assessed the same four nodes in the same order. For example, on Choice Item 1, 
the student could choose either a forest or ocean-themed testlet. Both the forest and ocean 
testlets were written to assess the same four nodes: F-66, SCI-315, SCI-501, and SCI-527. 
Because only the context changes between the choice paths, it would be expected that the 
proportion of students to master each node on each choice path is similar, that is, the difficulty 
should not have been different between the two testlets. Overall, most nodes had similar 
proportions of mastery between the choice paths; 39 of 56 (70%) nodes had a difference in 
proportion that was less than 0.1. The largest difference in proportion of mastery between 
choice paths for a node was for SCI-117 on the house and school testlets. The house testlet 
had a proportion of mastery of 0.2 on the SCI-117 node, while the school testlet had a higher 
proportion of mastery of 0.6 on the SCI-117 node (d = 0.9).  
 
Correlation Between Administration Time and Performance 
The correlation between students’ administration time and performance on scored items was 
also examined. Table 23 displays the correlation between time spent on items measuring nodes 
only and nodes mastered per testlet by linkage level. Because nodes mastered is a limited 
range of interval data, the Spearman correlation was calculated. The overall Spearman 
correlation between administration time for items measuring nodes only and nodes mastered 
per testlet is 0.08, suggesting that there is no correlation between students’ administration time 
and their performance on the items measuring nodes. Correlations at each linkage level ranged 
from 0.09 to 0.26. The overall correlation (ρ = 0.08) is lower than any of the correlations for 
specific linkage levels because the overall correlation is not weighted by sample size and there 
are considerable differences across linkage levels in variance of the administration time and 
node mastery variables. We do see a trend where the correlation increases as the linkage level 
increases.  
 
Table 23 
 
Correlation Between Administration Time (Scored Items Only) and Nodes Mastered by Linkage 
Level 

Linkage level n Spearman 
correlation 

Initial  1,127  0.09 
Distal (high school only) 562  0.13 
Precursor 1,871  0.22 
Target 577  0.26 

 
Wonder Questions 
A total of 18 testlets at the Precursor and Target linkage levels began and ended with wonder 
questions. As described in the Testlet Structure and Design section, the unscored wonder 
question was asked at the beginning of the testlet to gauge students’ current knowledge about 
the science content to be assessed and engage the student in the testlet. The exact same 
wonder question was asked at the end of the testlet to see if any change in knowledge occurred 
after completing the academic tasks. Overall, 2,607 testlets containing wonder questions were 
administered across both administrations. A total of 2,401 testlets (92%) contained answers to 
both wonder questions. Of the 206 testlets not containing answers to both wonder questions, 59 
testlets (29%) were missing an answer to the first question, 45 testlets (22%) were missing an 
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answer to the second question, and 102 testlets (49%) were missing answers to both questions. 
Table 24 summarizes the distribution of answer-changing patterns from the first wonder 
question to the second wonder question on testlets where both wonder questions were 
answered. The most frequent answer pattern was right to right (41%), followed by wrong to 
wrong (23%) and wrong to right (20%). Thus, 64% of students did not change their response. 
However, of those who did, the most common change was the desirable wrong to right change. 
That is, students originally answered incorrectly, but after engaging with the scored items 
measuring nodes, they provided a correct response to the same wonder question. 
 
Table 24  

Distribution of Answer Changing Patterns From Wonder Question 1 to Wonder Question 2 

Answer pattern n % 
RR 991 41.3 
WW 557 23.2 
WR 488 20.3 
RW 365 15.2 

Note. RR = right to right; WW = wrong to wrong; WR = wrong to right; RW = right to wrong. 
 
To evaluate patterns of answer changes on the wonder question based on complexity of the 
content assessed, Table 25 summarizes the distribution of answer changing patterns from the 
first wonder question to the second wonder question by linkage level. For both Precursor and 
Target levels, the most frequent answer pattern was right to right (41%; 44%), followed by right 
to wrong (23%; 24%). Students changed their answers from wrong to right more often at the 
Precursor level (22%) than the Target level (16%). At the Target level, the wrong to right and 
right to wrong answer patterns were almost equally likely.  
 
Table 25 
 
Distribution of Answer Changing Patterns From Wonder Question 1 to Wonder Question 2 by 
Linkage Level 

Answer pattern Precursor 
n (%) 

Target 
n (%) 

RR 740 (40.6) 251 (43.5) 
WW 271 (14.9) 94 (16.3) 
WR 396 (21.7) 92 (15.9) 
RW 417 (22.9) 140 (24.3) 

Note. RR = right to right; WW = wrong to wrong; WR = wrong to right; RW = right to wrong. 
 
We further evaluated the wonder question answer patterns in relation to overall performance on 
the scored items. Table 26 shows the average number of nodes mastered by answer pattern on 
wonder questions. Overall, students who answered both wonder questions correctly mastered 
more nodes on average than other students (1.2 nodes). Students who answered the final 
wonder question correctly mastered the second highest number of nodes (0.9 nodes). Similarly, 
students who answered the first wonder question correctly mastered more nodes on average 
(0.8 nodes) than students who answered both wonder questions incorrectly (0.5). This is 
expected, given the relationship between wonder question and the items measuring nodes of 
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the testlets. It is possible that higher mastery among students with right-to-wrong answers than 
wrong-to-wrong answers is indicative of partial understanding of the content.  
 
Table 26 

Average Number of Nodes Mastered by Answer Pattern 

Answer pattern n Average nodes mastered 
RR 991 1.20 
WW 557 0.48 
WR 488 0.94 
RW 365 0.76 

Note. RR = right to right; WW = wrong to wrong; WR = wrong to right; RW = right to wrong. The 
highest possible number of nodes mastered is four. 
 
The correlation between administration time for only wonder questions and nodes mastered was 
also analyzed. Table 27 displays the correlation between time spent on wonder questions only 
and nodes mastered per testlet, by linkage level. The overall Spearman correlation between 
total time for wonder questions and nodes mastered per testlet is 0.21, suggesting there is little 
to no correlation between the amount of time spent on wonder questions and a students’ overall 
performance on the scored portion of the testlet. 
 
Table 27 

Correlation Between Time Spent on Wonder Questions and Nodes Mastered by Linkage Level 

Linkage level n Spearman correlation 
Precursor 2,009 0.23 
Target 598 0.14 

 
Item Flagging Review 
In addition to evaluating test content in relation to student outcomes (i.e., node mastery), item-
level performance was examined to further investigate the psychometric properties of the I-
SMART items. Item statistics were calculated and reviewed by the test development team. The 
following item statistics were provided to the test development team: 
 
• Item p-value: the proportion of students answering the items correctly. 
• Weighted standardized difference: the z-score for the item’s p-values compared to the 

average p-value for that EE, linkage level, and node. 
• Conditional p-value for masters: the proportion of students who mastered the node who 

provided a correct response. 
• Conditional p-value for non-masters: the proportion of students who did not master the 

node who provided a correct response. 
 

Based on these statistics, items were flagged if they met any of the following four criteria: 
 
• The item was too challenging or too easy, as indicated by a p-value of less than .35 or 

greater than .95, respectively. The .35 threshold was chosen as most items offer three 
response options, so a value of less than .35 may indicate less than chance selection of the 
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options. The .95 threshold ensures that the item is not so easy that nearly every student 
provides a correct response. 

• The item was significantly easier or harder than other items assessing the same EE and 
linkage level, as indicated by an absolute standardized difference z-score of greater than 
1.96. 

• The item conditional p-value (master or non-master) was outside of the model expected 
range, as determined by a 95% credible interval around the parameter estimate. 

 
Overall, 133 items (29%) were not flagged by any of the statistics, 210 (46%) were flagged by 
only one criterion, 101 (22%) were flagged by two criteria, and 16 items (3%) were flagged by 
three criteria. No items were flagged by all four criteria. That 75% of items were flagged by one 
or fewer of the statistics indicates that the items largely performed as expected. Table 28 and 
Table 29 display the number and percentage of items in each linkage level and grade band, by 
the number of flagged criteria. Across linkage levels, the Initial level had the highest percentage 
of items that were flagged by one or more criteria (80%), while the Target level had the lowest 
percentage of items that were flagged by one or more criteria (53%). Across grade bands, the 
high school grade band had the highest percentage of items flagged by one or more criteria 
(76%), while the middle school grade band had the lowest percentage of items flagged by one 
or more criteria (65%). The item statistics and flags for items that were flagged by two or more 
statistics were sent to the test development team for review. Based on these statistics, the test 
development team identified trends in the items that will inform future work in the development 
of science content. See the Conclusions section of this report for a description of the future 
directions. 
 
Table 28 

Number and Percentage of I-SMART Items by Number of Flagged Criteria and Linkage Level 

Linkage level No flags One flag Two flags Three flags 
Initial 32 (20%) 90 (57%) 30 (19%) 6 (4%) 
Distal 13 (23%) 21 (38%) 18 (32%) 4 (7%) 
Precursor 51 (30%) 70 (42%) 43 (26%) 4 (2%) 
Target 37 (47%) 29 (37%) 10 (13%) 2 (3%) 

 
Table 29 

Number and Percentage of I-SMART Items by Number of Flagged Criteria and Grade Band 

Grade band No flags One flag Two flags Three flags 
Elementary  40 (30%) 61 (46%) 29 (22%) 4 (3%) 
Middle school 48 (35%) 63 (46%) 20 (15%) 5 (4%) 
High school 45 (24%) 86 (45%) 52 (27%) 7 (4%) 
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Psychometric Model 
This section organizes the progression from the foundation of the psychometric models used in 
the I-SMART assessments to the implementation of the final models in the I-SMART 
assessments. A brief overview of diagnostic classification models (DCMs) is presented to 
establish the psychometric foundation for the models utilized in the I-SMART assessments. The 
rationale for the choice of the fungible models as the initially chosen models is then presented. 
Next, a summary of the evidence supporting the selection of the fungible models over other 
possible models is presented. Finally, the implementation of the chosen fungible models is 
presented by examining the calibrated parameters and the scoring rules used to determine 
mastery assignment. 
 
The I-SMART assessment uses learning map models to specify distinct science knowledge, 
skills, and understandings (KSUs) and their relationships to each other through a network of 
sequenced nodes and connections, which are intended to guide the progression of learning. By 
specifying the connections between nodes, the learning map models theorize the nodes that are 
precursors to each node in the learning map models. Using psychometric terminology, learning 
map models define latent variables for students’ mastery status on assessed nodes and define 
the hierarchical relationship between the latent variables. For an example of a map for a single 
content standard, see Figure 1 in the Assessment Design section of the report. 
 
The I-SMART assessment estimates mastery for each assessed node to provide fine-grained 
feedback on student achievement. The node mastery estimations form a profile of mastery 
across multiple nodes, which is created using DCMs. DCMs are confirmatory latent class 
models that map observed student responses to categorical latent variables (e.g., Rupp et al., 
2010; Bradshaw, 2016). This allows for the reporting of more actionable results that can be 
used to support future instruction (Clark & Karvonen, 2019; Feldberg & Bradshaw, 2019). DCMs 
have been primarily applied across a variety of subjects in educational settings to provide fine-
grained feedback about what skills students have learned (e.g., Bradshaw et al., 2014; Templin 
& Bradshaw, 2014; Templin & Henson, 2008), although Sessoms and Henson (2018) noted in a 
review of DCM applications that about 85% of DCM-based assessments have examined either 
mathematics or reading. The process for estimating item and student parameters in the I-
SMART assessment can be described as specifying the Q-matrix (Tatsuoka, 1983), estimating 
the conditional probabilities for each latent class, and using the latent class conditional 
probabilities and observed responses to estimate the posterior probability of latent class 
membership for each student. For the I-SMART assessment, the probability of mastery is 
calculated at the node level. 
 
I-SMART Model Specification 
To provide detailed profiles of student mastery of attributes, DCMs utilize an item by attribute Q-
matrix to specify which attributes are assessed by each item. For each item, i in an assessment 
measuring k attributes, the vector 𝑞𝑞𝑖𝑖 = [𝑞𝑞𝑖𝑖1, 𝑞𝑞𝑖𝑖2, … , 𝑞𝑞𝑖𝑖𝑖𝑖] contains a dichotomous entry for each of 
the k attributes, where 𝑞𝑞𝑖𝑖𝑖𝑖 = 1 indicates the ith item measures the kth attribute and 𝑞𝑞𝑖𝑖𝑖𝑖 = 0 
indicates the ith item does not measure the kth attribute. 
 
The I-SMART assessment items are written so that each item only assesses a single node, 
which means the Q-matrix for each item was a column of ones. Because each item only 
measures a single node, there were two parameters estimated for each item: (a) the probability 
of a student who has not mastered the node providing a correct response and (b) the probability 
of a student who has mastered the node providing a correct response. A structural parameter, 
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which reflects the proportion of students who have mastered the assessed node, was also 
estimated.  

 
Model Calibration 
Latent class analysis was conducted for each node within each linkage level for each Essential 
Element (EE). The general form of latent class analysis (and DCMs) is: 

𝑃𝑃(𝑋𝑋𝑗𝑗 = 𝑥𝑥𝑗𝑗) = �𝑣𝑣𝑐𝑐

𝐶𝐶

𝑐𝑐=1

�𝜋𝜋𝑖𝑖𝑐𝑐
𝑥𝑥𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

(1 − 𝜋𝜋𝑖𝑖𝑐𝑐)1−𝑥𝑥𝑖𝑖𝑖𝑖  (1) 

where 𝜋𝜋𝑖𝑖𝑐𝑐 is the probability of a correct response to item i from a student in latent class c, 𝑥𝑥𝑖𝑖𝑗𝑗 is 
the dichotomously scored observed response to item i from student j, and 𝑣𝑣𝑐𝑐 is the base rate 
probability that a randomly selected student is a member of latent class c. Thus, the probability 
of a student in latent class c providing the observed response, 𝑥𝑥𝑖𝑖𝑗𝑗, is estimated by the 𝜋𝜋𝑖𝑖𝑐𝑐

𝑥𝑥𝑖𝑖𝑖𝑖(1−
𝜋𝜋𝑖𝑖𝑐𝑐)1−𝑥𝑥𝑖𝑖𝑖𝑖 term in equation (1). The probabilities of each observed response for the student are 
then multiplied across all items, which estimates the likelihood of a student in latent class c 
providing the observed response pattern. The probability of the observed response pattern for 
student j in latent class c is then multiplied by 𝑣𝑣𝑐𝑐. The product of 𝑣𝑣𝑐𝑐 and the probability of the 
observed response pattern represents the probability that the student is in latent class c and 
provided the observed response pattern. This calculation is done for all latent classes, and then 
summed, giving the total likelihood of the student’s observed data. 
 
Mathematically, 𝜋𝜋𝑖𝑖𝑐𝑐 is defined using the log-linear cognitive diagnosis model (Henson et al., 
2009), modified as described by Thompson (2019): 
 

𝜋𝜋𝑖𝑖𝑐𝑐 = 𝑃𝑃(𝑋𝑋𝑖𝑖𝑐𝑐 = 1|𝛼𝛼𝑐𝑐) =
𝑒𝑒𝑥𝑥𝑒𝑒(𝜆𝜆0 + 𝑏𝑏𝑖𝑖,0 + (𝜆𝜆1,1 + 𝑏𝑏𝑖𝑖,1,1)𝛼𝛼𝑐𝑐)

1 + 𝑒𝑒𝑥𝑥𝑒𝑒(𝜆𝜆0 + 𝑏𝑏𝑖𝑖,0 + (𝜆𝜆1,1 + 𝑏𝑏𝑖𝑖,1,1)𝛼𝛼𝑐𝑐)
  (2) 

 
where 𝜆𝜆0 is the node-level intercept and 𝑏𝑏𝑖𝑖,0 is the item-level deviation from the node-level 
intercept for item i. Thus, the intercept for item i can be calculated as 𝜆𝜆0 + 𝑏𝑏𝑖𝑖,0. Similarly, 𝜆𝜆1,1 is 
the node-level main effect, and 𝑏𝑏𝑖𝑖,1,1 is the item-level deviation from the node-level main effect 
for item i. Finally, 𝛼𝛼𝑐𝑐 is a binary indicator for the mastery status (0 = non-master, 1 = master) of 
students in latent class c. 
 
Items used in the I-SMART diagnostic assessment were written to be interchangeable in 
measuring the node. Consequently, a fungible model is assumed, which constrains the item-
level parameters to zero. Operationally, the 𝑏𝑏𝑖𝑖,0 and 𝑏𝑏𝑖𝑖,1,1 parameters from Equation (2) are set 
equal to zero. In addition to 𝜆𝜆0 and 𝜆𝜆1,1, the base rate of node mastery (𝑣𝑣𝑐𝑐) is estimated.  
 
In addition to being the theoretically preferred model due to the item writing practices that were 
used, the fungible model is also the most parsimonious. By constraining the item-level 
parameters to zero, fewer parameters need to be estimated, which reduces the data 
requirements and computational complexity of the model. 
 
A weakly informative prior was used to estimate each parameter. When an adequate amount of 
data has been obtained, weakly informed priors only constrain the parameter space to span the 
plausible range of parameter values without overly influencing the posterior distribution 
(Kruschke & Liddell, 2018). The weakly informative prior for the probability of a non-master 
providing a correct response was a normal distribution with a mean of 0 and a scale of 2. The 
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weakly informative prior for the probability of a master providing a correct response was a log-
normal distribution with a mean of 0 and a scale of 1. The weakly informative prior for the 
structural parameter was a beta distribution with shape parameters of 1 and 1. 
 
Because of the design of the I-SMART assessment, no students were assessed on all of the 
map neighborhood nodes for an EE, or even all of the nodes selected as assessment targets. In 
the Patterns of Mastery Profiles section in Map Validation, there was a significant amount of 
misfit in the models calibrated concurrently at the linkage level. Consequently, each node within 
each EE was calibrated using separate DCMs. In total, there were 80 assessed nodes, which 
means 80 DCMs were estimated.5 
 
Model Estimation 
The models were estimated in R version 3.6.3 (R Core Team, 2019) using the rstan package 
interface (Guo et al., 2019). The rstan package incorporates the Stan (Carpenter et al., 2017) 
programming language, which allows for the posterior distribution to be further explored. To do 
this, the rstan package and Stan use specific processes and algorithms (e.g., Markov chain 
Monte Carlo, Hamiltonian Monte Carlo, No-U-Turn sampler) for navigating the posterior 
distribution (Betancourt & Girolami, 2013; Hoffman & Gelman, 2014; Neal, 2011). A complete 
description of the model estimation procedure can be found in Thompson (2019). 
 
The DCMs for the I-SMART assessment were estimated with four chains per model, where 
each chain had a total of 2,000 iterations and the first 1,000 iterations were warm-up iterations 
that were discarded. Thus, there were a total of 4,000 iterations after discarding the warm-up 
iterations. Additionally, the adaptive threshold was set to 0.99, and the maximum tree depth was 
set to 15. A full description for the rationale of these choices can be found in Thompson (2019). 
 
Table 30 presents the data available for estimating the models. Because students tested at two 
adjacent linkage levels in each EE, the total number of students testing in each EE is not the 
sum of the number of students testing at each linkage level within an EE. 
 
Table 30 

Sample Sizes by Linkage Level 

Essential Element Initial Distal* Precursor Target Total 
5.LS2-1 150 N/A 190   40 190 
5.PS1-3 389 N/A 484   95 484 
MS.LS2-2 232 N/A 324   93 325 
MS.PS1-2 244 N/A 344 100 344 
HS.ESS3-3 129 281 232   79 361 
HS.LS2-2 107 349 435 191 542 

*Available at the high school level only. 
 
 

 
5 The pilot test form design means that students never tested on all three linkage levels. The shared nodes across 
adjacent linkage levels provides some information on the untested linkage level. However, low sample sizes, 
especially at the higher linkage levels, prevented the fully concurrent models from converging with this amount of 
missing data (i.e., approximately 33% missing for each EE, as one linkage level was always missing). 
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Model Fit 
Because fungible models were chosen based on their consistency with the item writing 
practices as well as parsimony, the model fit of these models must be evaluated to confirm that 
the evidence supporting the selection of fungible models is sufficient. The fungible models are 
first evaluated in the absolute sense to assess whether the models conform to the observed 
item responses. The assumption of fungibility is then evaluated by assessing the absolute and 
relative model fit of models with varying levels of fungibility.  
 
Absolute Model Fit 
For the DCMs used to estimate profiles of mastery in the I-SMART project, absolute model fit is 
measured using posterior predictive model checking (PPMC). PPMC assesses absolute model 
fit by simulating replications of the data using parameter values at each iteration of the posterior 
distribution (Gelman et al., 2013). Because 4,000 iterations of the posterior distribution were 
retained, there are 4,000 replicated data sets used in the PPMC for each model. 
 
For the replicated data sets at each of the iterations of the posterior distribution, Gelman et al. 
(1996) suggested using a discrepancy function to evaluate how the observed data relate to the 
replicated data. Béguin and Glas (2001) suggested a discrepancy measure defined as follows: 

𝜒𝜒𝑜𝑜𝑜𝑜𝑜𝑜2 = �
[𝑛𝑛𝑜𝑜 − 𝐸𝐸(𝑛𝑛𝑜𝑜)]2

𝐸𝐸(𝑛𝑛𝑜𝑜)

𝑆𝑆

𝑜𝑜=0

  (3) 

 
where s is the score point (i.e., specific total score on the assessment), 𝑛𝑛𝑜𝑜 is the number of 
respondents at score point s, and 𝐸𝐸(𝑛𝑛𝑜𝑜) is the expected number of respondents at score point s. 
 
A posterior predictive p-value (ppp) is calculated with the formula 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃(𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟2 ≥ 𝜒𝜒𝑜𝑜𝑜𝑜𝑜𝑜2 |𝑛𝑛𝑜𝑜). Put 
simply, ppp is the proportion of the replicated data sets with a 𝜒𝜒2 greater than or equal to the 
observed 𝜒𝜒2. Generally, ppp near .50 indicates good model fit (Crawford, 2014; Sinharay & 
Almond, 2007), ppp near zero indicates poor model fit (Thompson, 2019), and ppp near one 
indicates potential overfitting (Thompson, 2019). While the cutoff for identifying poor model fit is 
somewhat arbitrary, a cutoff of .05 could be used similar to the approach taken in null 
hypothesis significance testing. The proportion of the nodes with a ppp less than .05 reflects the 
number of nodes with poor fitting models. 
 
The fungible models with weakly informative priors demonstrated good absolute model fit (Table 
31), as the majority of linkage levels had 0% of nodes with a ppp less than .05 for each model. 
There were 12% of nodes at the Distal linkage level with ppp less than .05, which is indicative of 
poor model fit in these nodes. The Distal linkage level was only available at the high school 
level. Thus, these findings indicate that it may have been difficult to write items to this additional 
linkage level falling between the Initial and Precursor levels. These findings do not appear to 
have been influenced by sample size, as the sample sizes for the Distal linkage levels in the 
high school EEs were as large or larger than the sample sizes for the majority of the linkage 
levels in any of the EEs (Table 30). 
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Table 31 

Percentage of Nodes Exhibiting Misfit  

Linkage level With misfit (%) 
Initial  0 
Distal  12 
Precursor 0 
Target 0 

 
Evaluating the Fungibility Assumption 
Although the items are intended to be fungible, this is an assumption that should be tested. To 
evaluate the fungibility assumption, additional models with varying degrees of fungibility were fit 
to the data collected from the pilot administration. The equivalent slopes model allows the item-
level deviations for the node-level intercept to vary freely, while constraining the item-level 
deviations for the node-level main effect to zero. The item-level main effects are not estimated, 
but the node-level main effects are held constant within the node. In contrast, the node-level 
intercept is not estimated, but the item-level intercept is allowed to vary across items. The fixed 
partial equivalency model estimates the node- and item-level parameters, but the variance of 
the item-level main effects about the node-level main effects are fixed. The estimated partial 
equivalency model is similar to the fixed partial equivalency model, except the estimated partial 
equivalency model estimates a parameter for the variance of the prior for the item-level main 
effects parameter. The non-fungible model allows the item-level deviation parameters to freely 
vary without constraint. Thus, the non-fungible model allows for between-item variation 
regarding the probability of a correct response by non-masters and masters.  
 
Absolute Model Fit 
To test whether the I-SMART assessment items were fungible, the four additional models 
(equivalent slopes, fixed partial equivalency, estimated partial equivalency, and non-fungible) 
were calibrated and compared to the previously calibrated fungible model. The absolute fit of 
each model was evaluated as previously described using PPMC with ppp values. 
 
The absolute model fit of each model was examined using the percentage of nodes with ppp 
less than .05 that was described previously. As can be seen in Table 32, the majority of linkage 
levels had 0% of nodes with a ppp less than .05 for each model. There were 8% of the nodes at 
the Initial linkage level in the non-fungible model with ppp less than .05, and there were 12% of 
the nodes at the Distal linkage level in the fungible model with ppp less than .05, indicating poor 
model fit. 
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Table 32 

Percentage of Nodes Exhibiting Misfit, by Model  

Linkage level Fungible 
(%) 

Equal 
slopes 

(%) 

Fixed partial 
equivalency 

(%) 

Estimated 
partial 

equivalency 
(%) 

Non-
fungible 

(%) 

Initial  0 0 0 0 8 
Distal  12 0 0 0 0 
Precursor 0 0 0 0 0 
Target 0 0 0 0 0 

 
Because multiple models demonstrated adequate absolute model fit, relative model fit indices 
can be evaluated to determine the preferred model for each node. As mentioned previously, the 
items were intended to be fungible. Based on the results from Table 30, there was preliminary 
support for the fungible model. 
 
Relative Model Fit 
Model comparisons were also conducted as a measure of relative model fit. Relative model fit is 
evaluated by comparing the model fit of two models, often through the use of information 
criterion. Because the two models are compared to one another rather than to the observed 
data, it is important that the models compared in relative model fit analyses have both 
demonstrated evidence of adequate absolute model fit (Sen & Bradshaw, 2017). 
 
Two information criteria were applied to the resulting models: the Pareto smoothed importance 
sampling leave-one-out cross-validation (PSIS-LOO; Vehtari et al., 2017) and the Widely 
Applicable Information Criterion (WAIC; Watanabe, 2010). The WAIC assesses model fit by 
estimating the log transformation of the expected value of the posterior distribution, while 
penalizing for overfitting based on the number of parameters. The PSIS-LOO assesses model fit 
by omitting one data point from the posterior distribution and estimating a replacement data 
point, while controlling for deviations from normality stemming from the values in the tails of the 
posterior distribution. The PSIS-LOO has generally been found to be more robust than the 
WAIC, despite their mathematical similarities (Vehtari et al., 2017). The between-model 
differences for both the PSIS-LOO and the WAIC are considered statistically significant if the 
absolute value of the difference in the models’ statistics is greater than 2.5 times the standard 
error of the difference (Bengio & Grandvalet, 2004). 
 
As shown in Table 33, both the PSIS-LOO and WAIC fit statistics prefer the fungible model to 
the other four models, with the proportion of nodes favoring the fungible model ranging between 
61% and 64%. Thus, the fungible model appears to be the best fitting model in comparison to 
the other models for the observed response data for the majority of nodes. 
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Table 33 

Percentage of Models Preferring the Fungible Model 

Model 1 Model 2 Proportion of fungible 
models preferred by 

PSIS-LOO 

Proportion of 
fungible models 

preferred by WAIC 
Fungible Equal slopes 64.4 64.4 
Fungible Fixed partial equivalency 60.6 60.6 
Fungible Estimated partial equivalency 60.6 60.6 
Fungible Non-fungible 63.4 63.4 

Note. PSISI-LOO = Pareto smoothed importance sampling leave-one-out cross-validation; 
WAIC = Widely Applicable Information Criterion. 
 
Based on the absolute and relative model fit, the assumption of item fungibility appears to be 
supported. The absolute model fit results of this study indicate that there may be some localized 
instances of misfit for nodes at the Distal linkage level in the fungible model. Because the Distal 
linkage level is only available for nodes in the EEs for high school content, future work may 
attempt to identify any sources of misfit. Despite this localized misfit, the fungible model was 
preferred over the other four models based on the relative model fit results. 
 
Calibrated Parameters 
As described previously, the models were estimated with fungibility. That is, item-level 
parameters are shared across all items measuring the same node. With the fungibility 
assumption, only the node-level intercept (𝜆𝜆0) and the node-level main effect (𝜆𝜆1) from Equation 
(2) are estimated. In addition to the node-level parameters, the base rate of node mastery (𝑣𝑣𝑐𝑐) is 
estimated. Having shown that the fungible models have adequate absolute model fit and that 
the assumption of fungibility is justified, the calibrated parameters need to be evaluated to 
demonstrate that the estimated parameters have expected values. A summary of the calibrated 
parameters used to classify students as masters or non-masters in the pilot administration of the 
I-SMART assessment is provided in the following sections.  
 
Probability of Masters Providing Correct Response 
Students who have mastered a node are expected to demonstrate a higher probability of 
responding correctly to items measuring the node. Using the pilot calibration, Figure 5 depicts 
the conditional probability of masters responding correctly to items for each of the 80 nodes. 
Because the conditional standard error of measurement is maximized at .50, masters should 
have at least a 50% chance of responding correctly. The results in Figure 5 demonstrate that 
most nodes (n = 76, 95%) performed as expected. Additionally, 93% of nodes (n = 74) had a 
conditional probability of masters responding correctly of .6 or greater. No nodes (0%) had a 
conditional probability of masters responding correctly of .40 or less. Thus, most nodes 
performed as expected. Appendix C lists nodes with a probability of masters providing a correct 
response that is outside of the ideal range by EE and linkage level. 
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Figure 5 

Probability of Masters Responding Correctly to Items Measuring Each Node 

 

Note. Histogram bins are in increments of .01, and the reference line indicates .50. 
 
Probability of Non-Masters Providing Correct Response 
When items are functioning appropriately, non-masters should have a decreased probability of 
responding correctly to an item. High probabilities of a correct response by non-masters may 
indicate issues with the item. When non-masters are able to provide correct responses, there is 
a risk that non-masters will errantly be classified as masters, which undermines the validity of 
inferences made from the assessment. Figure 6 summarizes the probability of non-masters 
responding correctly to items measuring each of the 80 nodes. The majority of nodes (n = 79, 
99%) performed as expected, with most nodes (n = 70, 88%) having a conditional probability of 
.40 or less that non-masters would respond correctly. Appendix C lists nodes with a probability 
of non-masters providing a correct response that is outside of the ideal range by EE and linkage 
level. 
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Figure 6 

Probability of Non-Masters Responding Correctly to Items Measuring Each Node  

 
Note. Histogram bins are in increments of .01, and the reference line indicates .50. 
 
Item Discrimination 
The discrimination of a node reflects the ability to discern between masters and non-masters. 
This is quantified by subtracting the conditional probability of a non-master responding correctly 
from the conditional probability of a master responding correctly. Thus, the discrimination of a 
node is on a scale of 0 to 1, where 0 indicates no difference in conditional probabilities of 
responding correctly between masters and non-masters and 1 indicates perfect differentiation 
between masters and non-masters based on the conditional probability of responding correctly 
(e.g., masters have a 100% chance of providing a correct response and non-masters a 0% 
chance). Figure 7 displays the node discrimination values. Overall, 69% of nodes (n = 55) have 
a discrimination of .40 or greater, indicating a relatively large difference between the conditional 
probabilities of masters and non-masters. The .40 discrimination threshold was chosen as a 
reasonable difference between the conditional probabilities for the two mastery classes because 
the difference is large enough to be noticeably different yet not so large that masters always 
respond correctly and non-masters always respond incorrectly. Appendix C lists nodes with a 
discrimination that is outside of the ideal range by EE and linkage level. 
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Figure 7 
 
Difference Between Masters’ and Non-Masters’ Probability of Responding Correctly to Items 
Measuring Each Node 

 
Note. Histogram bins are in increments of .01, and the reference line indicates .50. 
Base Rate Probability of Mastery 
The I-SMART assessment is intended to match student KSUs to appropriate content at the 
node level. The base rate of mastery reflects the proportion of students who are masters of the 
node. When the base rate of mastery is around .50, the students assessed on the node have a 
50% likelihood of being a master and a 50% likelihood of being a non-master. Base rates closer 
to .50 indicate that the nodes match the KSUs. When the base rate of mastery approaches 0 or 
1, nearly all students assessed on the node are classified as non-masters or masters, 
respectively. Figure 8 displays the base rate of mastery probabilities of the nodes. Overall, 81% 
of nodes (n = 65) had a base rate of mastery between .25 and .75, which suggests most nodes 
are performing as intended. Regarding base rate of mastery values outside of .25 and .75, 15 
nodes (19%) had a base rate of mastery less than .25, and 0 nodes (0%) had a base rate of 
mastery greater than .75. This suggests students are more likely to be assessed on nodes they 
have not mastered than those they have mastered. Appendix C lists nodes with a base rate that 
is outside of the ideal range by EE and linkage level.
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Figure 8 

Base Rate of Node Mastery 

 

Note. Histogram bins are shown in increments of .01. 
 
Reliability 
Because the fungible models were selected, the reliability of the fungible models should also be 
examined. Reliability of node-level mastery can be evaluated through classification consistency 
(Sinharay & Johnson, 2019). Classification consistency is defined as the probability that a 
student would receive the same mastery classification for a node on two parallel forms of the 
assessment. Wang et al. (2015) defined a classification consistency statistic, 𝛾𝛾�, that approaches 
1.0 as the probability of mastery for a node approaches 0 or 1. This makes sense intuitively. As 
we become more certain about a student’s mastery classification, we also be more certain that 
they would achieve the same mastery status on a parallel form of the assessment. 
 
The statistic proposed by Wang et al. (2015) assumes that posterior probability of mastery 
would be consistent across parallel forms, not just the classification. However, Johnson and 
Sinharay (2018) show that a consistent classification could result in different posterior 
probabilities of mastery. Thus, Johnson and Sinharay (2018) propose a new statistic, 𝑃𝑃�𝑐𝑐, that 
corrects for this assumption. 
 
Table 34 and Figure 9 show the distribution of node reliability estimates for both the Wang et al. 
(2015) and Johnson and Sinharay (2018) indices. The Wang et al. and Johnson and Sinharay 
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indices are interpreted consistently with the recommendations from Landis and Koch (1977) that 
kappa estimates of .60 or above indicate acceptable agreement for categorical classifications. 
Overall, the reliability estimates from both Johnson and Sinharay (2018) and Wang et al. (2015) 
are consistent and fairly high, with only a small proportion of nodes showing a reliability below 
.60. Additionally, Figure 10 shows the distribution of reliability indices by linkage level. In 
general, the distributions are similar across most of the linkage levels. However, there does 
appear to be slightly lower reliability estimates for higher linkage levels. This finding is 
consistent with reliability findings for the Dynamic Learning Maps® (DLM®) assessment (DLM 
Consortium, 2019) and is likely due to smaller sample sizes at the higher linkage levels. 
 
Table 34 

Reliability Summaries Across All Nodes: Proportion of Nodes Within a Specified Index Range 

Reliability index <0.6 0.60–
0.64 

0.65–
0.69 

0.70–
0.74 

0.75–
0.79 

0.80–
0.84 

0.85–
0.89 

0.90–
0.94 

0.95–
1.00 

𝑃𝑃�𝑐𝑐 (Johnson & 
Sinharay, 
2018) 

.125 .125 .025 .088 .088 .175 .138 .212 .025 

𝛾𝛾� (Wang et al., 
2015) .162 .100 .050 .025 .112 .150 .138 .200 .062 

 
 
Figure 9 

Summaries of Node Reliability 
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Figure 10 

Conditional Reliability Evidence Summarized by Linkage Level 

 
 
Mastery Assignment 
Because the model fit evidence supports the selection of the fungible models, assignment of 
node mastery is based on the fungible models. There are two rules for assigning node mastery. 
Students can be classified as masters of the node when the estimated posterior probability is 
greater than .80 or when more than 80% of items were answered correctly. A posterior 
probability threshold of .80 provides more certainty than a lower threshold (e.g., .50) that 
students classified as masters are indeed masters. In other words, the Type I error rate is 
reduced. The 80% correct threshold allows students an alternative method to show mastery 
when they answer a high proportion of items correctly, but their posterior probability of mastery 
is still below .80 (e.g., because the overall rate of mastery for the node is extremely low). These 
mastery assignment rules are consistent with those used by the DLM alternate assessment 
(DLM Consortium, 2019). 
 
To evaluate the frequency that each scoring rule was used to determine students’ mastery 
status during the pilot administration of I-SMART assessment, the percentage of mastery 
statuses derived using each scoring rule was calculated. Posterior probability was given 
precedence, meaning students with a posterior probability greater than .80 and correct 
response rate of more than 80% were considered to have been classified as masters using the 
posterior probability estimates. For students with posterior probabilities less than .80, the 80% 
scoring rule was used. In comparing the usage of the two scoring rules (Figure 11), the majority 
of students in all EEs were assigned mastery status using the posterior probability scoring rule, 
although the proportion of students assigned mastery status using the 80% correct scoring rule 
was notably higher in EE.MS.LS2-2, EE.HS.ESS3-3, and EE.HS.LS2-2. 
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Figure 11 

Mastery Assignment by Scoring Rule for Each Essential Element 

 

To achieve a posterior probability greater than .80, students must often respond correctly to at 
least 80% of items; hence, the scoring rules were strongly correlated. Despite this relationship, 
there were instances where students had a correct response rate greater than 80%, yet their 
posterior probability was less than .80. The agreement between the scoring rules was estimated 
by comparing the mastery classifications using each of the scoring rules (e.g., a posterior 
probability of .60 and a correct response rate of 50% agree that the student has not mastered 
the node). For the pilot administration, the rate of agreement between the two scoring rules was 
89%. 
 
When the two scoring rules disagreed regarding the student’s mastery status, the posterior 
probability scoring rule indicated a higher level of mastery in 82% of the 11% of cases where the 
scoring rules were inconsistent. Thus, in some instances the posterior probabilities allowed 
students to demonstrate mastery when the percentage correct was lower than 80%. 
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Empirical Map Validation 
The I-SMART assessment is based on learning map models, which means validating the 
learning map models is central to supporting the inferences made from the I-SMART 
assessment. Prior to assessment development, preliminary map validation evidence is gathered 
through the initial map development and external review process (Swinburne Romine et al., 
2018). After assessment administration, statistical evaluation of the learning map models has 
two components. First, validating the individual nodes serves to empirically demonstrate the 
uniqueness and consistency of the nodes. Second, validating the connections provides 
empirical support for the order of the nodes in the learning map models. Because the 
connections provide a sequence in which the nodes are likely to be mastered, mastery of later 
nodes should be contingent on mastering preceding nodes. Thus, inferences made from 
mastery classifications depend on accurate knowledge of which nodes are requisite for 
mastering a new node. 
 
Node Validation 
We took a three-step approach to validating the nodes of the I-SMART learning map models. 
First, we examined the uniqueness of the nodes by examining the between-node mastery 
correlations. Second, we examined the consistency of node-level weighted p-values across 
linkage levels for overlapping nodes. Finally, we evaluated the consistency of node mastery 
across linkage level for overlapping nodes. 
 
Correlations of Node Mastery 
To see if the nodes are as unique as intended, we assessed the pairwise node mastery 
classification correlations for all nodes within each Essential Element (EE) and within each EE 
and linkage level. Figure 12 displays the distribution of pairwise node mastery classification 
correlations within each EE. As can be seen, the distribution of correlation coefficients is 
centered around .60, with most of the correlation coefficients between .30 and .80. While the 
observed correlations between nodes were moderately positive, the correlations were not strong 
enough to assume mastery of a node given mastery of another node, which suggests 
uniqueness of nodes within EEs. 
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Figure 12 

Pairwise Node Correlations, Within Essential Element 

Within EE, all of the negative correlations were between nodes in EE.MS.PS1-2, and almost all 
of the correlations above .90 were between nodes in EE.MS.LS2-2. The remaining correlations 
with magnitudes above .80 tended to be spread evenly across the remaining EEs. Sample size 
appeared to be related to small mastery correlations. Within-EE correlations less than or equal 
to .20 tended to have at least one node with a smaller sample size than the sample sizes of 
within-EE correlations with larger magnitudes. More specifically, all of the within-EE correlations 
less than or equal to .20 involved at least one node with a sample size of 130 or less, while the 
majority of within-EE correlations with a magnitude greater than .20 involved both nodes having 
sample sizes greater than 130.  

Figure 13 displays the distribution of pairwise node mastery classification correlations within 
each EE and linkage level. The distribution of the correlation coefficients is centered around .70. 
In Figure 13, most of the correlation coefficients are between .40 and .95. The higher correlation 
between nodes within linkage levels is expected, as these nodes are conceptually closer 
together than nodes within an EE. As nodes are compared that are further apart (i.e., in the 
same EE but not the same linkage level), lower correlations would be expected, as seen in 
Figure 12. The between-node mastery correlations within each linkage level and EE again 
suggest the uniqueness of nodes. The observed correlations are generally positive and of 
moderate strength, as would be expected for knowledge and skills related to a single content 
standard. However, the observed correlations are not so strong as to indicate that if one node is 
mastered, mastery of another node could be assumed. 
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Figure 13 

Between-Node Correlations, Within Linkage Level and Essential Element 

 

Within EE and linkage level, there were no negative correlations and there were 30 correlations 
above .80. Of the 30 correlations above .80, 25 of the 30 correlations (83%) were between 
nodes at the Initial linkage level. Almost all of the correlations above .90 were between nodes in 
EE.MS.LS2-2 at the Initial linkage level. The remaining correlations above .80 were relatively 
evenly spread across the other EEs. Of the correlations less than .40, eight of the 10 (80%) 
correlations were between nodes at the Target linkage level. Sample size again appeared to be 
related to small mastery correlations. The within–linkage level correlations with magnitudes less 
than or equal to .40 tended to have smaller node sample sizes than the within–linkage level 
correlations with larger magnitudes. For example, the lone within–linkage level correlation with a 
magnitude less than .20 only had 40 students testing on each node.  
 
Overlapping Node Consistency 
Overlapping nodes are defined as nodes that are common to testlets at different linkage levels. 
For example, node SCI-999 would be an overlapping node if it were included within both the 
Initial and Precursor linkage levels. I-SMART pilot assessment forms included testlets at two 
adjacent linkage levels, so a student would test on the same node in the context of two different 
linkage levels. When considering student performance at each node, students should be 
performing similarly on overlapping nodes when assessed on the node in the context of the 
testlet measuring each linkage level. That is, a student’s performance on SCI-999 should be 
constant, regardless of whether the node is assessed on an Initial or Precursor testlet. 
Operationally, this means that overlapping nodes should have similar weighted p-values across 
linkage levels. More specifically, node SCI-999 would be expected to have a weighted p-value 
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near .6 at the Precursor linkage levels if node SCI-999 had a weighted p-value of .6 at the Initial 
linkage levels. 
 
Based on the data obtained from the pilot administration, there are 12 assessed overlapping 
nodes (see Figure 4 for an example of overlapping nodes in EE.5.LS2-1 and EE.5.PS1-3). To 
evaluate whether students were performing similarly on overlapping nodes, we examined the 
weighted p-values for each node along with the 95% confidence interval for each weighted p-
value. If the 95% confidence intervals overlapped for the overlapping nodes, the nodes were 
considered to have similar performance on the different linkage levels. Table 35 shows the 
weighted p-values for all of the overlapping nodes, including whether each node had similar 
performance at each of the measured linkage levels. Table 35 shows two weighted p-values for 
SCI-119 because it is a node in EE.5.PS1-3 and EE.MS.PS1-2. 
 
Table 35 

Percentage of Overlapping Nodes with Similar Performance, by Essential Element (EE) 

Node EE LL N Weighted 
p-value 
(SE) of 

lower LL 

Weighted 
p-value 
(SE) of 

higher LL 

Similar 
performance 

SCI-326 EE.5.LS2-1 I/P 150/190 .36 (.17) .44 (.18) Yes 
SCI-309 EE.5.LS2-1 P/T 190/40 .35 (.17) .60 (.25) Yes 
SCI-119 EE.5.PS1-3 I/P 389/484 .44 (.18) .52 (.19) Yes 
SCI-121 EE.5.PS1-3 P/T 484/95 .39 (.19) .61 (.25) Yes 
SCI-313 EE.MS.LS2-2 I/P 232/324 .53 (.19) .54 (.18) Yes 
SCI-119 EE.MS.PS1-2 I/P 244/344 .39 (.17) .61 (.21) Yes 
SCI-804 EE.MS.PS1-2 P/T 344/100 .54 (.21) .61 (.25) Yes 
SCI-598 EE.HS.ESS3-3 I/D 129/281 .19 (.13) .35 (.17) Yes 
SCI-601 EE.HS.ESS3-3 D/P 281/232 .44 (.20) .50 (.18) Yes 
SCI-643 EE.HS.ESS3-3 P/T 232/79 .43 (.18) .48 (.25) Yes 
SCI-501 EE.HS.LS2-2 I/D 107/349 .19 (.14) .48 (.18) Yes 
SCI-80 EE.HS.LS2-2 D/P 349/435 .39 (.18) .50 (.19) Yes 
SCI-528 EE.HS.LS2-2 P/T 435/191 .37 (.18) .52 (.25) Yes 

Note. LL = linkage level; SE = standard errors; I/P = Initial/Precursor; P/T = Precursor/Target; 
I/D = Initial/Distal; D/P = Distal/Precursor. N reflects the sample size at the lower linkage level 
followed by the sample size at the upper linkage level. 
 
As can be seen in Table 35, all of the overlapping nodes for each EE perform similarly across 
linkage levels. This result can be largely due to the relatively large standard error associated 
with the weighted p-values. The large standard errors may be due to variability in the student 
population, administration design where students were assessed at a linkage level above or 
below their skill level as defined by the First Contact survey, or small sample sizes. Future work 
may examine the impact of limited sample size on these findings. However, the current results 
provide preliminary evidence that the overlapping nodes are functioning similarly across linkage 
levels within each EE, as expected. 
 
Overlapping Node Mastery 
As was the case with examining the weighted p-values for overlapping nodes across linkage 
levels, we expected that students would perform similarly in terms of node mastery across 



56 
 

linkage levels. In this study, we examined the percentage of students with consistent node 
mastery statuses on overlapping nodes. Consistent node mastery statuses are defined as 
students having the same mastery status at both linkage levels of an overlapping node. If the 
overlapping node is performing as expected, students should be classified consistently for the 
node at both linkage levels. For example, a student mastering the node at the Initial and 
Precursor linkage levels of an overlapping node would have consistent node mastery statuses. 
We examined consistency using the percentage of consistent mastery classifications, Cohen’s 
kappas, and tetrachoric correlations.  
 
Table 36 presents the classification consistency for each overlapping node. Table 36 presents 
two sets of classification consistency estimates for SCI-119 because it is a node in EE.5.PS1-3 
and EE.MS.PS1-2. The three consistency estimates were interpreted according to the 
recommendations from Landis and Koch (1977), who suggested kappa estimates between .40 
and .60 indicated fair agreement for categorical classifications and kappa estimates greater than 
or equal to .60 indicated acceptable agreement for categorical classifications. The 
classifications are largely consistent, with a few exceptions. The three consistency estimates 
can be interpreted in both absolute and relative terms. For example, node SCI-804 on 
EE.MS.PS1-2 demonstrated suboptimal classification consistency (21%); additionally, the 
classification consistency for node SCI-804 (21%) was lower than the other overlapping node on 
this EE, indicating node SCI-804 was classified less consistently than the other overlapping 
node on this EE (SCI-119; 71%). Similarly, node SCI-601 on EE.HS.ESS3-3 demonstrated fair 
classification consistency (53%) but was also classified less consistently than the other 
overlapping nodes on this EE (SCI-598 and SCI-643; 85% and 75%, respectively).
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Table 36 
 
Percentage of Overlapping Nodes with Consistent Mastery Classifications, by Essential 
Element, Linkage Level, and Node 
 

Essential 
Element 

Linkage 
level Node Consistent mastery 

classifications (%) 
Cohen’s 
kappa 

Tetrachoric 
correlation 

EE.5.LS2-1 I/P SCI-326 60.0 .12 .44 
EE.5.LS2-1 P/T SCI-309 77.5 .54 .87 
EE.5.PS1-3 I/P SCI-119 58.9 .23 .69 
EE.5.PS1-3 P/T SCI-121 71.6 .33 .60 
EE.MS.LS2-2 I/P SCI-313 51.7 .19 .72 
EE.MS.PS1-2 I/P SCI-119 70.9 .42 .65 
EE.MS.PS1-2 P/T SCI-804 21.0 .01 .09 
EE.HS.ESS3-3 I/D SCI-598 84.5 .43 .69 
EE.HS.ESS3-3 D/P SCI-601 53.3 .14 .54 
EE.HS.ESS3-3 P/T SCI-643 74.7 .46 .66 
EE.HS.LS2-2 D/P SCI-80 88.1 .29 .57 
EE.HS.LS2-2 I/D SCI-501 82.2 .38 .65 
EE.HS.LS2-2 P/T SCI-528 83.7 .28 .73 

Note. I/P = Initial/Precursor; P/T = Precursor/Target; I/D = Initial/Distal; D/P = Distal/Precursor. 
 
Map Structures 
To validate the connections of the I-SMART learning map models, a three-step approach was 
used, each with different levels of model assumptions (see Thompson & Nash, 2019). First, 
within each linkage level, a log-linear cognitive diagnosis model (LCDM; Henson et al., 2009) 
and a hierarchical diagnostic classification model (HDCM; Templin & Bradshaw, 2014) were 
used to evaluate sections of the map neighborhoods. Specifically, we examined the absolute 
and relative model fit of the saturated LCDMs with all possible mastery profiles and the 
constrained HDCMs, which include only mastery profiles that are plausible given the 
connections between nodes in the underlying map structures. If the learning map models are 
structured correctly, the constrained model should demonstrate equivalent model fit to the 
saturated model. Second, we examined the node mastery patterns using the separate node 
calibrations for each of the 80 nodes. As previously mentioned, the learning map models specify 
the order in which knowledge, skills, and understandings (KSUs), as defined by the nodes, 
should be acquired. This order should be reflected in the node mastery patterns. Finally, we 
examined the weighted p-values for each node to determine whether the weighted p-values are 
consistent with the learning map models. That is, we expect nodes further along in the 
progression to be more difficult than preceding nodes because each node represents additional 
KSUs that must be mastered. This means that subsequent nodes should have lower weighted 
p-values than their preceding nodes. 
 
Patterns of Mastery Profiles 
To evaluate the connections of the I-SMART learning map models, the nodes in the learning 
map neighborhoods can be analyzed with and without the constraints imposed by the 
connections. In the saturated model, the learning map models’ constraints are not imposed on 
mastery classifications. Take, for example, Figure 14. Here, SCI-599 and SCI-601 are two 
nodes in the Distal linkage level of EE.HS.ESS3.3. The learning map models specify that SCI-
601 depends on SCI-599, meaning that the KSUs assessed in SCI-601 depend on the KSUs 
assessed in SCI-599. In the saturated model, SCI-599 and SCI-601 are analyzed without 
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considering the connection between these two nodes. That is, SCI-601 could be mastered 
without mastering SCI-599. In the constrained model, SCI-599 and SCI-601 are analyzed under 
the assumption that SCI-599 leads to SCI-601, which implies SCI-599 should be mastered in 
order for SCI-601 to be mastered.  
 
Table 37 presents the possible mastery profiles for EE.HS.ESS3-3 at the Distal linkage level, 
where the highlighted mastery profiles indicate which mastery profiles are allowed in the 
constrained model. One example of an unexpected node mastery pattern was for students who 
mastered SCI-598 and did not master SCI-599.This profile is unexpected because SCI-599 is a 
precursor for SCI-598, which suggests students should master SCI-599 before mastering SCI-
598.  
 
Figure 14 

Nodes in EE.HS.ESS3-3 at the Distal Linkage Level 
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Table 37 

All Possible Mastery Profiles for EE.HS.ESS3-3 at the Distal Linkage Level 

SCI-599 SCI-598 SCI-600 SCI-601 Allowed in 
constrained 

model 
0 0 0 0 Yes 
1 0 0 0 Yes 
0 1 0 0 No 
0 0 1 0 No 
0 0 0 1 No 
1 1 0 0 Yes 
1 0 0 1 No 
0 1 0 1 No 
1 0 1 0 Yes 
0 1 1 0 No 
0 0 1 1 No 
1 1 0 1 No 
1 1 1 0 Yes 
1 0 1 1 No 
0 1 1 1 No 
1 1 1 1 Yes 

Note. The mastery profiles highlighted in gray are the mastery profiles allowed in the 
constrained model. 
 
This study examined whether the empirical data collected during the pilot administration support 
the proposed structure of the learning map models. Because of the underlying learning map 
models, it is expected that the constrained models will show equivalent absolute and relative 
model fit in comparison to the saturated model. As in the Psychometric Model section, absolute 
model fit was assessed using ppp, and relative model fit was assessed using the Pareto 
smoothed importance sampling leave-one-out cross-validation (PSIS-LOO; Vehtari et al., 2017) 
and the Widely Applicable Information Criterion (WAIC; Watanabe, 2010). 
 
Of the 20 linkage levels, five (25%) showed adequate absolute model fit when all mastery 
profiles were included in the model. When the model was constrained to include only the map-
implied mastery profiles, six (30%) show adequate absolute model fit. For the unconstrained 
LCDMs, all of the Target linkage level models demonstrated adequate absolute model fit, 
except for the Target linkage level of EE.HS.LS2-2. For the constrained HDCMs, all of the 
Target linkage level models demonstrated adequate absolute model fit. In terms of relative 
model fit, the constrained model fit the linkage level as well or better than the saturated model in 
100% of the linkage levels according to the PSIS-LOO and the WAIC. This indicates that the 
model fit was not degraded by imposing the underlying map structures. Thus, there is 
preliminary support for the I-SMART learning map models. However, the results pertaining to 
the relative model fit comparisons should be interpreted with caution given the limited number of 
linkage levels showing adequate absolute model fit (Sen & Bradshaw, 2017).  
 
Patterns of Mastery Assignment 
Because many of the models showed insufficient model fit when nodes were estimated 
concurrently within linkage levels, patterns of mastery assignment across the separately 
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calibrated nodes was also evaluated. The separately calibrated nodes generally showed good 
model fit, as described in the Model Fit section of this report). Using the separate node 
calibrations, a mastery profile was created for each student across the assessed nodes. Student 
mastery profiles were then examined to determine if the profiles were consistent with the 
underlying learning map models. As previously mentioned when describing the constrained 
HDCM models, the ordering of the nodes in the learning map models should preclude certain 
mastery profiles from occurring if the proposed node structure is correct. This analysis 
compared the node mastery profiles achieved by students to the expected mastery profiles and 
identified the number of students with an unexpected mastery profile. 
 
Individual node mastery classifications can be summarized as a profile of node mastery for each 
linkage level the student was assessed on, just like the profiles presented in Table 35. These 
profiles were then compared to our a priori expectations for existing mastery profiles. Using 
EE.HS.ESS3-3 at the Distal linkage level as an example, Table 35 presents the 16 total 
possible node mastery patterns and the six node mastery patterns that were expected, given 
the map structures.  
 
To examine where the map structures may be misspecified, node mastery patterns and 
connections can be flagged based on the rate of unexpected mastery patterns. Linkage levels 
were flagged when more than 25% of students had an unexpected node mastery pattern or 
when a given connection between two nodes was flagged for an unexpected mastery pattern for 
more than 50% of students. The flagging thresholds were chosen in accordance with the work 
by Thompson and Nash (2019) so that the flagging method erred on the side of over-reviewing 
content for potential misspecifications. 
 
Table 38 provides the percentages of students with at least one unexpected mastery pattern 
across connected nodes, by linkage level and EE. In Table 38, EE.HS.LS2-2 at the Target 
linkage level has around 50% of students with unexpected mastery patterns. The remaining 
linkage levels have 35% or less of students with unexpected mastery patterns, and most of 
these linkage levels have less than 20% of students with unexpected mastery patterns. 
 
In the elementary grade band, four linkage levels were flagged for the 25% rule, and no linkage 
levels were flagged for the 50% rule. In the middle school grade band, no linkage levels were 
flagged for the 25% rule or the 50% rule. Finally, in the high school grade band, four linkage 
levels were flagged for the 25% rule, and no linkage levels were flagged for the 50% rule. Thus, 
in total, eight out of 20 linkage levels (40%) were flagged for unexpected patterns of mastery 
assignment, all on the basis of the 25% rule.  
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Table 38 
 
Percentage of Students With an Unexpected Mastery Pattern, by Essential Element and 
Linkage Level 
 

Grade 
band 

Essential Element Initial Distal* Precursor Target 

EL EE.5.LS2-1 26.0 N/A 25.3 35.0 
EE.5.PS1-3 27.0 N/A 23.6 10.5 

MS EE.MS.LS2-2 12.5 N/A   9.9   0.0 
EE.MS.PS1-2 17.2 N/A 10.5 16.0 

HS EE.HS.ESS3-3   8.5 31.0 29.7 25.3 
EE.HS.LS2-2 13.1   0.0   4.8 52.4 

 Note. EL = elementary; MS = middle school; HS = high school. 
*Available at the high school level only.  
 
Patterns of Node Difficulty 
Because the KSUs in the precursor node are necessary to learn the KSUs in the subsequent 
node, it is expected that students should perform better on the first node in the hierarchical 
sequence. That is, as students progress through the learning map, the content should become 
more difficult. In this study, we first placed similar students into cohorts based on the students’ 
complexity band, which was determined from teacher responses to the First Contact survey. 
The First Contact survey contains items reflecting each student’s skills in communication and 
science. After placing similar students into cohorts, students’ node-level performance was 
measured using weighted p-values and their standard errors. We then identified unexpected p-
value patterns within each cohort’s performance by identifying places where the preceding node 
was significantly more difficult than the subsequent node, as defined by the 95% confidence 
intervals around each node’s weighted p-value. 
 
Figure 15 shows the nodes in EE.HS.ESS3.3 at the Distal linkage level. In Figure 15, the 
connections between nodes are presented, as well as the node code, weighted p-value, and 
95% confidence interval for the weighted p-value. The directionality of the connections between 
nodes are given with the use of arrows. As an example, the connection between SCI-599 and 
SCI-598 indicates that the SCI-599 node precedes the SCI-598 node in the learning map 
models, which implies the expectation that students should have a higher weighted p-value on 
node SCI-599 than on node SCI-598. Note that SCI-601 has a higher weighted p-value than 
SCI-600, despite SCI-600 being a precursor. However, because the confidence intervals for the 
two nodes overlap, this discrepancy may be due to sampling variability, and is therefore not 
flagged. 
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Figure 15 

Nodes and Weighted p-values in EE.HS.ESS3-3 at the Distal Linkage Level 

 

The connections between these nodes were aggregated by EE, and we calculated the 
percentage of the node connections within each EE that had an unexpected p-value pattern. For 
the 90 assessed connections, all of the connections demonstrate p-value patterns consistent 
with the I-SMART learning map models. It should be noted, however, that many of the weighted 
p-values have wide 95% confidence intervals.  
 
Evaluating Structure Misspecifications 
The different types of evidence of map structure can be evaluated together to offer insights for 
potential improvements for the map structures. For example, unexpected findings from patterns 
of mastery profiles and patterns of mastery assignment can be compared. Figure 16 presents 
the nodes and connections of EE.5.LS2-1 at the Target linkage level, and Figure 17 presents 
the profiles of mastery for EE.5.LS2-1 at the Target linkage level. Figure 17 shows areas where 
the students demonstrated unexpected profiles of mastery in the saturated model. The profiles 
of attribute mastery in Figure 17 are presented as vectors where SCI-311 is the first entry, SCI-
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307 is the second entry, SCI-7 is the third entry, and SCI-309 is the fourth entry (i.e., [SCI-311, 
SCI-307, SCI-7, SCI-309]). The patterns of mastery profiles study indicated that the most 
common unexpected profile was [0,1,0,1]. This pattern represents students who have mastered 
SCI-307 and SCI-309, but have not mastered SCI-7. This profile is unexpected because 
students should master SCI-7 prior to mastering SCI-307. The finding that this particular profile 
was flagged by the patterns of mastery profiles method is also consistent with the findings from 
the patterns of mastery assignment method. In that method, we examined unexpected patterns 
of mastery assignment for students across nodes. The most common unexpected node patterns 
for EE.5.LS2-1 at the Target linkage level are shown in Table 39, where the percentage variable 
reflects the number of students with the unexpected node mastery pattern relative to the total 
number of students completing testlets at that linkage level. The unexpected node mastery 
patterns identified in Table 39 are consistent with the unexpected patterns of mastery 
assignment identified in Figure 17. 
 
Figure 16 

Nodes in EE.5.LS2-1 at the Target Linkage Level 
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Figure 17 
 
The Proportion of Students With Each Mastery Profile in the Saturated and Constrained Models 
for EE.5.LS2-1 at the Target Linkage Level (N = 40) 

 

Table 39 
 
Number of Students With an Unexpected Mastery Pattern on EE.5.LS2-1 at the Target Linkage 
Level 
 

From To Count % 
SCI-309 SCI-7 8 20.0 
SCI-309 SCI-307 6 15.0 
SCI-7 SCI-307 6 15.0 

 
Together, the first two methods indicate that there may be a misspecification in the defined map 
structure. However, results from the third method, patterns of node difficulty, did not indicate any 
reversals in the expected p-values for nodes in this linkage level. There are a couple of reasons 
for why the third method might provide results inconsistent with the previous two. The total 
sample size for this linkage level (and therefore each node) was only n = 40. Thus, the p-values 
from the third method have very large standard errors. The large amount of uncertainty in the p-
values could be masking differences that would manifest with more data. Alternatively, the small 
sample sizes could be impacting the results of the first two methods. With small samples, there 
is also greater uncertainty in parameter estimates, which are used for mastery classifications. 
Thus, it is possible that additional data may resolve the unexpected mastery profiles and 
assignment patterns that were observed. Therefore, although the methods presented in this 
section provide general support for the defined map structures, it is important to consider the 
context of the data collection (i.e., small sample sizes, sparse data across linkage levels) when 
drawing inferences and interpreting the results. 
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Evaluation of Student Experience 
As described in the Pilot Study Design section of this report, the I-SMART pilot included 
embedded and post-administration survey items to learn about teachers’ perceptions of their 
students’ experience with the testlets as well as students’ perceptions of their own performance 
on each testlet. The relationship between survey items and student performance was also 
explored.  
 
After each testlet, teachers were asked two embedded survey questions to indicate the amount 
of instructional time spent on the tested Essential Element (EE) during the school year and 
student mastery of the EE.6 After the student completed both testlets, teachers completed a 
more comprehensive survey about the student’s overall experiences with the assessment. A 
total of 2,144 students and 995 teachers participated in the I-SMART pilot study, and 2,056 
students (95.9%) and 949 teachers (95.4%) completed at least one survey question over the 
two testing windows. Some students and teachers participated during both testing windows.  
 
To evaluate the relationship between survey items and student performance, students’ node 
mastery (described in the Psychometric Model section of this report) was aggregated for each 
linkage level and EE. Linkage level mastery is the mean performance (i.e., mastered = 1, did 
not master = 0) on the nodes at each linkage level of an EE. EE mastery is the mean 
performance (i.e., mastered = 1; did not master = 0) on the nodes that comprise the EE. Both 
linkage level and EE mastery range from 0 (no mastery) to 1 (complete mastery).  
 
For analyses involving the student self-evaluation question, which was administered after each 
linkage level testlet, linkage level mastery is used as the outcome measure. For analyses that 
involve the teacher embedded survey questions or the final teacher survey, which were 
administered after the assessment, EE mastery is used as the outcome measure.  
 
In analyses where a correlation coefficient is calculated, Cohen’s (1988) conventions are used 
to interpret effect sizes. A correlation coefficient of .10 represents a weak or small association, a 
correlation coefficient of .30 represents a moderate correlation, and a correlation coefficient of 
.50 or larger represents a strong correlation.  
 
Student Self-Evaluation and Testlet Performance 
After completing each testlet at the Distal, Precursor, and Target linkage levels, students 
completed self-evaluation items. Students were asked to evaluate their own performance by 
selecting one of the three options (happy, neutral, or sad; see Figure 2). Overall, 68.1% of the 
evaluations were happy, 16.3% were neutral, 11.9% were sad, and 3.8% were missing (i.e., 
students did not provide a response). The percentage of student self-evaluations by grade level 
and linkage level are shown in Table 40 and Table 41, respectively.  
 

 
6 Since the pilot took place in fall 2019, teachers’ reports of instructional time reflect only a small portion of the 
school year. 
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Table 40 

Student Self-Evaluation by Grade Level (N = 3,237) 

Grade level Happy 
n (%) 

Neutral 
n (%) 

Sad 
n (%) 

Missing 
n (%) 

3–5 535 (66.1) 145 (17.9) 101 (12.5) 28 (3.5) 
6–8 612 (71.3) 122 (14.2) 86 (10.0) 39 (4.5) 
9–12 1,056 (67.3) 259 (16.5) 197 (12.6) 57 (3.6) 
Total 2,203 (68.1) 526 (16.3) 384 (11.9) 124 (3.8) 

Note. Students are represented in this table for each testlet that they completed.  
 
Students across all linkage levels most often reported happy on their self-assessment, though 
students at the Distal level chose sad more often (17.6%) than those at the Precursor (12.0%) 
or Target (5.5%) levels. 
 
Table 41 

Student Self-evaluation by Linkage Level (N = 3,237) 

Linkage level Happy 
n (%) 

Neutral 
n (%) 

Sad 
n (%) 

Missing 
n (%) 

Distal  371 (58.9) 107 (17.0) 111 (17.6) 41 (6.5) 
Precursor 1,358 (67.6) 335 (16.7) 240 (12.0) 76 (3.8) 
Target 474 (79.0) 84 (14.1) 33 (5.5) 7 (1.2) 
Total 2,203 (68.1) 526 (16.3) 384 (11.9) 124 (3.8) 

Note. Students are represented in this table for each testlet that they completed.  
 
The Spearman correlation coefficient between student self-assessment (1 = sad, 2 = neutral, 3 
= happy) and linkage level mastery was 0.19, which was statistically significant (p < .0001), 
although it demonstrates a small effect size. Table 42 displays the median linkage level mastery 
status by student self-assessment.  
  
Table 42 

Median Student Self-Assessment by Linkage Level Mastery Status 

Student self-
assessment 

n Median 

Happy 2,203 0.25 
Neutral 526 0.00 
Sad 384 0.00 
Total 3,237 0.00 

Note. Linkage level mastery is the mean performance (i.e., mastered = 1, did not master = 0) on 
the nodes at each linkage level of an Essential Element.  
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Students’ Use of Accessibility Supports 
Figure 18 shows the Personal Needs and Preferences (PNP) profile selection rates for I-
SMART students compared to the full Dynamic Learning Maps® (DLM®) population. Overall, 
teachers selected accessibility supports at similar frequencies in the I-SMART and DLM 
populations. However, teachers tended to select individualized manipulatives and the calculator 
less often for students participating in I-SMART. 
 
Figure 18 

Personal Needs and Preferences Profile Selection Rates Comparison  

  
 
After students completed the testlets, teachers were asked to indicate the accessibility supports 
students actually needed during test administration that required additional materials and those 
that were provided by a test administrator. Teachers reported that when completing the 
assessment, just over 33% of students (n = 578) used individualized manipulatives, while over 
63% (n = 1,092) did not require any supports that required additional materials. Additionally, 
88.1% of students (n = 1,524) required a human read aloud. Table 43 summarizes teacher 
reported accessibility supports for students.  
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There are some differences in the number of supports recorded in the PNP profile and those 
reported in Table 43 due to different teacher response rates (Ns) to the two surveys, as well as 
the fact that teachers sometimes selected supports on the PNP profile that were not ultimately 
used during testing. For example, on the PNP profile, teachers recorded that 40.9% of students 
required individualized manipulatives; however, teachers reported that 33.4% of students used 
individualized manipulatives during the I-SMART assessment. Similarly, the PNP profile 
indicated that 62.8% of students required the test administrator to enter responses for students, 
while teachers reported this support was actually used by only 36.2% of students. These 
discrepancies are not surprising because the PNP profile indicates which supports should be 
available to the student across assessments in all subjects, while the teacher has flexibility in 
deciding what to actually provide for each assessment. 
 
Table 43 

Teacher-Reported Accessibility Supports Used During Administration (N = 1,730) 

Support n % 
Supports that required additional materials   

None 1,092 63.1 
Two-switch system 54 3.1 
Single-switch system/access profile enabled 92 5.3 
Individualized manipulatives 578 33.4 

Supports provided by the test administrator   
None 153 8.8 
Test administrator entering responses for student 626 36.2 
Sign interpretation of text 37 2.1 
Partner-assisted scanning 23 1.3 
Language translation of text 50 2.9 
Human read aloud 1,524 88.1 

Note. Missing responses = 516. 
 
Teachers were asked about their students’ access to accessibility supports (see Table 44). Of 
the approximately 70% of teachers who responded, most agreed (n = 789; 46.4%) or strongly 
agreed (n = 537; 31.6%) that students used similar accessibility supports on the I-SMART pilot 
assessment to what they use in instruction. 
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Table 44 

Teachers’ Level of Agreement to Questions about Accessibility Supports  

Teacher survey item Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Not 
applicable 

n (%) 

Missing 
n 

Total 
n 

The student was able to effectively use 
available accessibility supports.  113 (6.6) 99 (5.8) 780 (45.5) 525 (30.6) 198 (11.6) 531 1,715 

The accessibility supports this student used 
on the assessment were similar to the ones 
s/he uses for instruction.  

76 (4.5) 107 (6.3) 789 (46.4) 537 (31.6) 190 (11.2) 547 1,699 

Note. Percentages are based on total number of responses. Row totals do not include missing counts. 

 



70 
 

Teachers’ Perceptions of Students’ Experiences With the I-SMART 
Assessments 
As shown in Table 45, across all judgments of student mastery, teachers were most likely to 
report providing a total of 1–10 hours of instruction on the tested EE (n = 1,510; 53.1%) during 
the 2018–2019 school year up until the time the I-SMART assessment was administered. Of 
note, approximately 17% reported mastery or partial mastery of an EE with no instruction, and 
approximately 24% of those reporting that the skill was not taught on the mastery question 
indicated at least 1 hour of instruction. 
 
Table 45 
Teacher’s Judgement of Student Mastery of the Essential Element by Hours of Instruction on 
the Essential Element (N = 2,827) 
 

Mastery None 
n (%) 

1–10 hours 
of instruction 

n (%) 

11–20 hours 
of instruction 

n (%) 

21–30 
hours of 

instruction 
n (%) 

>30 hours of 
instruction 

n (%) 

Mastered 11 (10.8) 59 (57.8) 13 (12.8) 8 (7.8) 11 (10.8) 
Partially mastered 53 (6.0) 451 (50.7) 241 (27.1) 100 (11.3) 44 (5.0) 
Not mastered 88 (6.9) 892 (69.6) 193 (15.1) 53 (4.1) 56 (4.4) 
Skills not taught 421 (76.0) 108 (19.5) 14 (2.5) 3 (0.5) 8 (1.4) 
Total 573 (20.3) 1,510 (53.1) 461 (16.3) 164 (5.8) 119 (4.2) 

Note. Missing responses = 410. 
 
The survey that teachers completed about the student’s overall experiences with the 
assessment consisted of multiple-choice and Likert scale items focusing on teachers’ 
perceptions of students’ responses to assessment items, accessibility supports, and student 
engagement and interest in the assessment.  
 
Table 46 displays the results regarding teachers’ level of agreement to questions about their 
students’ responses to the assessment items. For the majority of students, teachers agreed (n = 
824; 49.0%) or strongly agreed (n = 620; 36.9%) that the student responded to the items on the 
assessment to the best of his or her knowledge. However, for 26% (n = 432) of students, 
teachers indicated that the student was not able to respond to items regardless of his or her 
disability, behavior, or health concerns. In comparison, teachers responding to the 2019 DLM 
Teacher Survey gave this same response for 15% (n = 7,992) of students. 
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Table 46 
 
Teachers’ Level of Agreement to Questions About Their Students’ Responses to the Assessment  
 

Teacher survey item Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Missing 
n 

Total 
responses 

n 
The student has responded to the items on this 

assessment to the best of his or her 
knowledge or ability. 

112 (6.7) 124 (7.4) 824 (49.0) 620 (36.9) 566 1,680 

The student was able to respond to items 
regardless of his or her disability, behavior, or 
health concerns. 

218 (13.1) 214 (12.9) 755 (45.5) 473 (28.5) 586 1,660 

The student had access to all necessary 
supports in order to participate on the 
assessment. 

56 (4.0) 65 (4.7) 663 (48.0) 598 (43.3) 864 1,382 

Note. Percentages are based on total number of responses. Row totals do not include missing counts.  
 
Teachers answered questions about student effort on the assessment and interest in science instructional activities (see Table 47). 
For most students, teachers agreed or strongly agreed (79.9%; n = 1,367) that the student tried to do his or her best on the 
assessment. Nearly 70% (n = 816) of students are typically interested in science instructional activities.  
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Table 47 

Teachers’ Level of Agreement to Questions About Student Effort and Interest  

Teacher survey item Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Not 
applicable 

n (%) 

Missing 
n 

Total 
responses 

n 
This student tried to do his or her 

best on the assessment. 125 (7.3) 194 (11.3) 831 (48.6) 536 (31.3) 25 (1.5) 535 1,711 

This student is typically interested 
in classroom instructional 
activities related to science. 

137 (11.4) 225 (18.7) 593 (49.2) 223 (18.5) 27 (2.2) 1,041 1,205 

Note. Percentages are based on total number of responses. Row totals do not include missing counts.  
 
For nearly 55% students, teachers agreed or strongly agreed that the student was interested and engaged in the assessment. 
Teachers disagreed or strongly disagreed that students were interested and engaged at a slightly higher rate (47.8%; n = 322) for 
students in Grades 9–12 than for students in Grades 3–5 or 6–8. When examining differences by students’ complexity band (see 
Pilot Study Design section), teachers judged students at the Foundational level (72.8%, n = 134) and Band 1 level (63.2%, n = 338) 
as being less engaged than students at higher complexity bands. Table 48 displays teachers’ level of agreement by students’ grade 
level and complexity band.  
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Table 48 
 
Teachers’ Level of Agreement to “This Student Was Interested and Engaged in the 
Assessment” by Grade Level and Complexity Band  
 

Grade level Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Not 
applicable 

n (%) 

Missing 
n 

Total 
responses 

n 
3–5 108 (20.9) 117 (22.6) 220 (42.6) 70 (13.5) 2 (0.4) 157 517 
6–8 88 (16.6) 138 (26.0) 213 (40.2) 88 (16.6) 3 (0.6) 137 530 
9–12 142 (21.1) 180 (26.7) 241 (35.8) 103 (15.3) 8 (1.2) 231 674 

Complexity 
band           

Foundational 78 (42.4) 56 (30.4) 38 (20.7) 9 (4.9) 3 (1.6) 53 184 
Band 1 169 (31.6) 169 (31.6) 152 (28.4) 44 (8.2) 1 (0.2) 215 535 
Band 2 53 (12.7) 101 (24.2) 203 (48.6) 57 (13.6) 4 (1.0) 99 418 
Band 3 38 (6.5) 109 (18.7) 281 (48.1) 151 (25.9) 5 (0.9) 158 584 

Total 338 (19.6) 435 (25.3) 674 (39.2) 261 (15.2) 13 (0.8) 525 1,721 
Note. Percentages are based on total number of responses. Row totals do not include missing 
counts.  
 
As described in the Testlet Structure and Design section, choice items provided a choice path 
for students at the Initial, Precursor, and Distal levels. Teachers were asked if their students 
understood the options. Overall, teachers reported nearly half (48.1%, n = 823) of the students 
did not understand the choice options (see Table 49), and students in Grades 9–12 (52.1%, n = 
339) were less likely to understand the choice options than students in Grades 3–5 or 6–8. 
When examining differences by students’ complexity band, teachers judged students placed at 
the Foundational level (73.4%, n = 135) and Band 1 level (67.8%, n = 361) as having more 
difficulty understanding choice options than students at the higher complexity bands.  
 



74 
 

Table 49 
 
Teachers’ Level of Agreement With “This Student Understood the Choice Options” by Grade 
Level and Complexity Band 
 

Grade level Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Not 
applicable 

n (%) 

Missing 
n 

Total 
responses 

n 
3–5 110 (21.3) 144 (27.9) 188 (36.4) 72 (14.0) 2 (0.4) 158 516 
6–8 79 (15.0) 141 (26.8) 220 (41.8) 84 (15.9) 3 (0.6) 140 527 
9–12 136 (20.3) 213 (31.8) 223 (33.3) 88 (13.2) 9 (1.4) 236 669 

Complexity 
band        

Foundational 73 (39.7) 62 (33.7) 32 (17.4) 12 (6.5) 5 (2.7) 53 184 
Band 1 164 (30.8) 197 (37.0) 141 (26.5) 27 (5.1) 3 (0.6) 218 532 
Band 2 48 (11.6) 132 (31.8) 164 (39.5) 68 (16.4) 3 (0.7) 102 415 
Band 3 40 (6.9) 107 (18.4) 294 (50.6) 137 (23.6) 3 (0.5) 161 581 

Total 325 (19.0) 498 (29.1) 631 (36.9) 244 (14.3) 14 (0.8) 534 1,712 
Note. Percentages are based on total number of responses. Row totals do not include missing 
counts.  
 
When asked if their students enjoyed the assessment experience, almost half of the responses 
(48.4%, n = 800) indicated teachers agreed or strongly agreed (Table 50). Teachers’ responses 
indicated they agreed or strongly agreed at higher rates for students in Grades 3–5 and 6–8 
than for students in Grades 9–12. When examining differences by students’ complexity band, 
teachers judged students at the Foundational level (68.4%, n = 121) and Band 1 level (65.1%, n 
= 332) as enjoying the assessment experiences less than students at the higher complexity 
bands.  
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Table 50 
 
Teachers’ Level of Agreement With “This Student Enjoyed the Assessment Experience” by 
Grade Level and Complexity Band 
 

Grade level Strongly 
disagree 

n (%) 

Disagree 
n (%) 

Agree 
n (%) 

Strongly 
agree 
n (%) 

Not 
applicable 

n (%) 

Missing 
n 

Total 
responses 

n 
3–5 109 (22.1) 120 (24.3) 196 (39.8) 59 (12.0) 9 (1.8) 181 493 
6–8 86 (16.9) 156 (30.7) 190 (37.4) 64 (12.6) 12 (2.4) 159 508 
9–12 145 (22.3) 202 (31.0) 225 (34.6) 66 (10.1) 13 (2.0) 254 651 

Complexity 
band        

Foundational 75 (42.4) 46 (26.0) 43 (24.3) 5 (2.8) 8 (4.5) 60 177 
Band 1 161 (31.6) 171 (33.5) 132 (25.9) 35 (6.9) 11 (2.2) 240 510 
Band 2 56 (13.9) 113 (28.0) 183 (45.3) 43 (10.6) 9 (2.2) 113 404 
Band 3 48 (8.6) 148 (26.4) 253 (45.1) 106 (18.9) 6 (1.1) 181 561 

Total 340 (20.6) 478 (28.9) 611 (37.0) 189 (11.4) 34 (2.1) 594 1,652 
Note. Percentages are based on total number of responses. Row totals do not include missing 
counts.  
 
Table 51 shows the survey results regarding how many of the students’ assessment tasks had 
content that matched instruction, overall, by grade level, and by students’ complexity band. 
Teachers indicated that only 24.7% (n = 425) of students had assessment tasks with most or all 
content that matched instruction. This finding was surprising given that the eligibility criteria 
included students receiving instruction on the two grade-band specific science EEs. Teachers 
reported a smaller number of high school students (21.9%, n = 148) had assessment tasks that 
matched instruction compared to Grades 3–5 or 6–8. Additionally, for 88.1% of students (n = 
163) in the Foundational complexity band, less than half of their assessment tasks matched 
their instruction.  
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Table 51 

Proportion of Assessment Tasks with Content that Matched Instruction (N = 1,726) 

Grade level None 
n (%) 

Some (less than 
half) 
n (%) 

Most (more than 
half) 
n (%) 

All 
n (%) 

3–5 102 (19.7) 287 (55.5) 106 (20.5) 22 (4.3) 
6–8 100 (18.8) 282 (53.1) 128 (24.1) 21 (4.0) 
9–12 138 (20.4) 392 (57.8) 128 (18.9) 20 (3.0) 

Complexity 
Band     

Foundational 54 (29.2) 109 (58.9) 15 (8.1) 7 (3.8) 
Band 1 143 (26.6) 303 (56.3) 82 (15.2) 10 (1.9) 
Band 2 81 (19.3) 245 (58.5) 81 (19.3) 12 (2.9) 
Band 3 62 (10.6) 304 (52.1) 184 (31.5) 34 (5.8) 

Total 340 (19.7) 961 (55.7) 362 (21.0) 63 (3.7) 
Note. Missing responses = 520. 
 
The survey also asked teachers how well the difficulty level of the majority of the content in the 
testlets matched the students’ skill level. For over 60% of students (n = 1,037), teachers felt that 
the assessment tasks were “too hard”. Nearly 86% of students (n = 156) at the Foundational 
level and over 81% of Band 1 students (n = 437) had assessment content that was judged to be 
“too hard.” Table 52 displays the distribution of responses by grade level and students’ 
complexity band.  
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Table 52 
 
How Did the Difficulty Level of the Majority of the Content Match the Student’s Skill Level? (N = 
1,726)  
 

Grade level Too easy 
n (%) 

About right 
n (%) 

Too hard 
n (%) 

I don’t 
remember 

n (%) 
3–5 11 (2.1) 191 (36.9) 310 (59.9) 6 (1.2) 
6–8 10 (1.9) 216 (40.7) 296 (55.7) 9 (1.7) 
9–12 6 (0.9) 225 (33.2) 431 (63.7) 15 (2.2) 

Complexity 
band     

Foundational 1 (0.6) 22 (12.1) 156 (85.7) 3 (1.7) 
Band 1 0 (0.0) 95 (17.7) 437 (81.2) 6 (1.1) 
Band 2 6 (1.4) 181 (43.1) 224 (53.3) 9 (2.1) 
Band 3 20 (3.4) 334 (57.0) 220 (37.5) 12 (2.1) 

Total 27 (1.6) 632 (36.6) 1,037 (60.1) 30 (1.7) 
Note. Missing responses = 520. 
 
Teachers were asked to select factors related and not related to the assessment that may have 
impacted their students’ responses to assessment items (Table 53). Teachers felt that the 
expectations were too high for nearly 62% of students (n = 1,070). For over 35% of students (n 
= 608), teachers believed that the student’s overall temperament on the day of the assessment 
may have impacted their responses. For a large number of students, teachers indicated that 
“other” factors, both related (28.2%, n = 488) and unrelated (39.7%, n = 686) to the assessment 
impacted student performance, suggesting that there were many unspecified factors that took 
place in the pilot study. 
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Table 53 

Factors That May Have Impacted the Student’s Response to Items (N = 1,730) 

Factors N % 
Factors related to the assessment   

It was too high an expectation for this student 1,070 61.9 
Other 488 28.2 
Graphics were ambiguous 225 13.0 
Graphics were distracting 91 5.3 
It was too low an expectation for this student 39 2.3 

Factors not related to the assessment   
Other 686 39.7 
Overall temperament that day 608 35.1 
Environmental distractors (e.g., noisy room, 
temperature of room) 561 32.4 

Physical or emotional behaviors that occurred that 
day 465 26.9 

Note. Missing responses = 516. Teachers were allowed to select multiple responses, so 
percentages add up to more than 100.  
 
One topic of particular interest in this part of the study was the relationship between effort and 
engagement. To gain preliminary understanding of student effort as it related to student interest 
and engagement, we calculated the Spearman correlation between teacher responses to two 
items, “the student was interested and engaged in the assessment,” and “the student tried to do 
his/her best on the assessment.” Those who chose Not Applicable were eliminated from the 
analysis. The correlation was .58 (p < 0.0001), which demonstrates a large effect size. 
Teachers who judged their students to be interested and engaged typically also believed that 
these students tried to do their best on the assessment.  
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Relationship of Teacher Perceptions With Student Performance 
 
To evaluate the relationship between teacher perceptions and student performance, we 
examined the Spearman correlation between teachers’ responses to five Likert items judging 
students’ interest, engagement, effort, understanding, and enjoyment of the assessment with 
students’ EE mastery results. We eliminated those who chose Not Applicable from the 
correlational analysis. Table 54 displays the correlations with each statement. Correlations 
range from 0.27 to 0.43. While all are statistically significant, the correlation of the statement 
“The student tried to do his or her best on the assessment” with students’ EE mastery 
demonstrates a small effect size, while all other correlations demonstrate a moderate effect 
size. As teacher-reported student interest and engagement increased, EE mastery also 
increased.  
 
Table 54 
 
Spearman Correlation Coefficients Between Teacher’s Responses to Selected Items and 
Students’ Essential Element Mastery  
 

Teacher survey item Correlation 
coefficient 

This student was interested and engaged in the assessment 0.41 
This student tried to do his or her best on the assessment 0.27 
The student understood the choice options 0.43 
This student enjoyed the assessment experience 0.39 
This student is typically interested in classroom instructional activities 

related to science 0.32 

Note. p < .0001 for all correlation coefficients. 
 
Table 55 displays median EE mastery across the agreement categories selected by teachers for 
each item. As students’ interest and engagement as reported by teachers increased, EE 
mastery also increased. This pattern holds across all survey items. 
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Table 55 

Median Essential Element Mastery by Teachers’ Level of Agreement with Items 

Teacher survey item Strongly disagree 
n, median 

Disagree 
n, median 

Agree 
n, median 

Strongly agree 
n, median 

The student was interested and engaged in the 
assessment 338, 0.000 435, 0.125 674, 0.375 261, 0.500 

This student tried to do his or her best on the 
assessment 125, 0.000 194, 0.125 831, 0.250 536, 0.375 

The student understood the choice options 325, 0.000 498, 0.125 631, 0.375 244, 0.500 
The student enjoyed the assessment experience 340, 0.000 478, 0.250 611, 0.375 189, 0.500 
The student is typically interested in classroom 

instructional activities related to science 137, 0.000 225, 0.125 593, 0.250 223, 0.375 

Note. Group sums do not add up to the overall total because of missing responses.  
 
Teachers’ perceptions of how well students mastered the content in relation to how they performed on the assessment was also 
considered. After each testlet, the teacher was asked how well the student had mastered the content. We correlated teachers’ 
judgments (1 = Did not master skills, 2 = Partially mastered skills, 3 = Mastered skills) with students’ EE mastery results. The 
Spearman correlation coefficient was 0.41 (p < .0001), which demonstrates a moderate effect size. Teachers’ judgement of 
students’ mastery was significantly correlated with their students’ EE mastery score. Table 56 displays the median of students’ EE 
mastery by teachers’ perceptions of student mastery. Students whose teachers judged them to master or partially master skills had 
higher EE mastery results than those judged not to master the skills.  
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Table 56 
 
Median Essential Element Mastery by Teachers’ Perceptions of Student Mastery  
 

Teachers’ judgement of student 
mastery 

Proportion of nodes mastered 
for the Essential Element 

n, median 
Mastered skills 64, 0.750 
Partially mastered skills 569, 0.500 
Did not master skills 931, 0.125 
Missing 293, 0.125 
Overall total 1,857, 0.250 

Note. Essential Element mastery is the mean performance (i.e., mastered = 1, did not master = 
0) on the nodes of an Essential Element.  
 
To evaluate the extent to which teacher perceptions of testlet difficulty were associated with 
student performance, we correlated teachers’ perceptions of (a) the difficulty level of the testlet 
content matched to the student’s skill level and (b) whether assessment items were “too high of 
an expectation” for the student with student’s EE mastery.  
 
The Spearman correlation between teachers’ perception of the difficulty level of the testlet 
content (1 = too easy, 2 = about right, 3 = too hard) and EE mastery was –0.45 (p < .0001), 
which demonstrates a moderate effect size. Students whose teacher had perceptions of content 
being “too easy” had a higher median EE mastery than those whose teacher judged the content 
as “too hard.” Table 57 displays the median of EE mastery by teachers’ perceptions of content 
difficulty.  
 
Table 57 

Median Essential Element Mastery by Teachers’ Perception of Content Difficulty  

Content difficulty Proportion of nodes 
mastered for the Essential 

Element 
n, median 

Too easy 27, 0.750 
About right 632, 0.500 
Too hard 1,037, 0.125 
Missing 520, 0.125 
Total 2,216, 0.250 

Note. Essential Element mastery is the mean performance (i.e., mastered = 1, did not master = 
0) on the nodes of an Essential Element.  
 
The point biserial correlation between teachers choosing “It was too high an expectation for this 
student” (0 = no; 1 = yes) as a factor impacting student response (see Table 53) and student EE 
mastery was –0.36. Students whose teachers indicated that items were too high of an 
expectation generally had lower EE mastery. Table 58 shows the median of EE mastery by 
instructional time. EE mastery increased as amount of instruction increased.    
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Table 58 
 
Median Essential Element (EE) Mastery by Instructional Time 
 

Instructional time Proportion of nodes mastered 
for the Essential Element 

n, median 
None 386, 0.125 
1–10 hours 1,055, 0.250 
11–20 hours 312, 0.313 
21–30 hours 109, 0.375 
>30 hours 93, 0.375 
Missing 291, 0.125 
Total 2,246, 0.250 

Note. Essential Element mastery is the mean performance (i.e., mastered = 1, did not master = 
0) on the nodes of an Essential Element .
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Conclusions and Future Directions 
One of the culminating objectives of Goal 2 of the I-SMART project is to have a set of testlets 
that could be models for a future assessment system along with a scoring model that supports 
reporting of student mastery of nodes in I-SMART neighborhood maps associated with several 
Essential Elements (EEs). As such, the I-SMART pilot study, conducted in the winter and fall of 
2019, evaluated the I-SMART testlets, including item quality, item difficulty, and impact of item 
features on performance, and provided data to select a final scoring model. The pilot study also 
gathered data on teachers’ and students’ perceptions of the assessment. This section organizes 
the main findings by each research question addressed in the pilot study, followed by potential 
future directions. 
 
Research Question 1: How do item and testlet features impact item and 
testlet performance? 
 
The I-SMART pilot study examined student performance on the I-SMART testlets through data 
regarding node mastery, administration time, performance on choice paths and wonder 
questions, and item level performance. For node mastery, the number of nodes mastered was 
examined by linkage level, EE, grade band, and domain. Students at lower linkage levels 
tended to master more nodes than students at higher linkage levels. Students mastered more 
nodes in the physical science EEs than in the life science and earth and space science EEs. 
Students in the middle school grade band tended to master more nodes than students in the 
elementary and high school grade bands. The total administration time was less than 6 minutes 
for most testlets, and the administration time of scored items was less than 4 minutes for most 
testlets. For the choice items, students tended to choose the second choice option. Despite this 
tendency, the number of nodes mastered was similar across the choice paths, suggesting 
similar difficulty across the choice paths. Most students selected the same answer to the 
wonder question presented at the beginning of the testlet and again at the end. Correct 
responses, whether to one or both of the wonder questions, were positively related to the 
number of nodes mastered. For item level performance, items were flagged for unexpected 
psychometric properties using four statistics. Of the 460 items developed for the I-SMART pilot 
study, 133 items (29%) were not flagged by any statistics, and 210 items (46%) were only 
flagged by a single statistic. These results suggest the majority of items performed as expected. 
 
The test development team reviewed the flagged items and noted two major themes. First, the 
test development team noted that there was a significant percentage of students who did not 
respond to items at the Initial level. This may suggest that these items were insufficiently 
engaging for some students at the Initial level. Alternatively, this may indicate that some 
students were working at a level lower than the Initial level and that these students require 
further reduced complexity to access the testlet content. Second, the test development team 
noted that distractors could be better targeted to specific misconceptions. There were several 
items where non-masters had a high probability of providing a correct response, indicating that 
the distractors were too obviously incorrect. Similarly, there were items where masters had a 
low probability of providing a correct answer, suggesting that the distractors may have been too 
challenging for these items. A consequence of the findings related to distractors is that linkage 
levels may not optimally discriminate between masters and non-masters. This was supported in 
our analysis of the data, as a few linkage levels did show a discrimination value of less than .25 
(see Figure 7). 
 
The findings pertaining to the impact of item and testlet features on item and testlet performance 
were positive. The item level performance results suggest the items performed as expected, the 
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difficulty across the choice paths was similar, and correct responses to the wonder questions 
were related to the number of nodes mastered. The total administration time and administration 
time of the scored items suggest the testlets developed for the I-SMART pilot study were 
appropriate for the intended population, in terms of the amount of time we would expect 
students with significant cognitive disabilities to devote to completing assessment items. The 
time spent by students on the I-SMART pilot study testlets was comparable to what has been 
observed for other assessment programs for this population of students [i.e., the Dynamic 
Learning Maps® (DLM®) assessments].  
 
Research Question 2: Which type of scoring model is optimal for the 
student response data collected from the assessments? 

The I-SMART modeling approach estimates student mastery of assessed knowledge, skills, and 
understandings using diagnostic classification modeling. A latent class analysis is applied to 
each learning map node to estimate the posterior probability of node mastery. After examining 
different item constraints, the fungible model appears to fit the student responses the best. 
Thus, the items are assumed to be equivalent within each node, meaning the probability that 
masters will respond correctly to an item is the same for all items within each node and the 
probability that non-masters will respond correctly to an item is the same for all items within 
each node. In determining node mastery, students were classified as masters if they had a 
posterior probability of node mastery greater than or equal to .80 or if they had a correct 
response rate of 80% or greater. Students who do not meet either of these criteria are classified 
as non-masters of the node. The majority of nodes had reliability statistics greater than .60, 
indicating acceptable levels of agreement for categorical classifications (Landis & Koch, 1977). 
The nodes with reliability statistics less than .60 occurred at higher linkage levels, which 
suggests the lower reliability statistics are likely due to smaller sample sizes at the higher 
linkage levels. Thus, reliability analyses indicate that, overall, student mastery classifications 
have a high degree of consistency. 

Research Question 3: Do empirical data support the structure of the 
learning map models? 

The map validation studies indicated general support for the proposed map structures. The 
node validation studies indicated that nodes tended to provide unique information about 
students’ mastery of the assessed skills. The correlations of node mastery study demonstrated 
a stronger relationship within linkage level than within EE, but these relationships were not so 
strong that mastery of one node implied mastery of another node. The overlapping node 
consistency study showed that all of the overlapping nodes demonstrated consistent 
performance based on the node-level weighted p-values and standard errors. Further, the 
majority of overlapping nodes demonstrated adequate classification consistency. The studies 
evaluating map structure supported the proposed learning map models. While the patterns of 
mastery profiles study showed limited evidence of adequate absolute model fit for the saturated 
and the constrained models, the patterns of mastery assignment showed the majority of linkage 
levels and connections were accurately specified. Further, the patterns of node difficulty 
demonstrated weighted node p-values that were consistent with the underlying learning map 
models. Taken together, these results suggest the models largely conformed to the 
hypothesized learning map models. There were, however, a few notable discrepancies between 
student mastery patterns and the hypothesized learning map models. As such, future work in 
this area should continue gathering data to further evaluate the proposed structure of the 
learning map models in areas where these discrepancies were noted.  
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Research Question 4: What are students’ and teachers’ perceptions of 
students’ experiences with the new testlets? 
 
Analyses showed that teachers’ perceptions of both testlet difficulty and student experiences 
were related to student performance on the I-SMART assessments. Teachers’ perceptions 
regarding student engagement and interest, effort, understanding of choice options, enjoyment 
of the assessment experience, and interest in classroom science instructional activities were all 
significantly correlated with student mastery of EEs. The results also support the notion that 
students have better results when they receive more instruction on the EE. However, teachers 
reported a large number of students across grade levels as not having assessment tasks that 
matched content they received in instruction. This indicates a potential mismatch between the 
science instruction teachers are providing and the complexity of the I-SMART assessment 
content.  
 
While the results for Research Question 1 showed that students at lower linkage levels tended 
to master more nodes than students at higher linkage levels, teacher survey findings suggest 
students at the lower complexity bands (Foundational and Band 1) are not engaged in science 
instruction or assessments. These contradictory results suggest the need for additional research 
to understand relationships between student complexity band, teacher expectations, opportunity 
to learn science content, and student performance.  
 
Teachers generally agreed that their students used similar accessibility supports on the I-
SMART pilot assessments to what they use in instruction. Comparisons of I-SMART Personal 
Needs and Preferences profile selections to the full DLM population also showed that teachers 
select accessibility supports at similar frequencies.  
 
Significance and Future Directions 
Results from the I-SMART pilot study provide many useful insights for developing innovative, 
Next Generation Science Standards–based science assessments for students with significant 
cognitive disabilities. From these findings, there are several areas for potential future research.  
 
Test Development 
First, the test development team noted that additional work is needed to evaluate how best to 
provide accessible content at an appropriate level for all students, but especially those testing at 
the Initial level. Specifically, they noted that for these Initial items, there was often a conditional 
p-value for masters above .8, with an overall p-value below .35, suggesting that apart from the 
masters, the items were too difficult for most of the students. Notably, many of the items show 
almost equal numbers of students answering correctly as students who “attended to other 
stimuli,” indicating that these items may not have been engaging for some students. 
 
Second, the test development team noted that many items, across all linkage levels, had a 
relatively high probability of non-masters providing a correct response, suggesting that students 
who have not yet mastered the content are able to guess the correct answer. Improved 
distractors that more purposefully target specific misconceptions may help better discriminate 
between masters and non-masters, parsing the difference between true masters and those 
students who were able to correctly guess the correct response to items. 
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Finally, two patterns were discerned regarding item types and content. For item types, the test 
development team noted that multiple-choice multiple-select items, where the student can select 
multiple responses, tend to perform worse than standard multiple-choice items, likely due to 
students being unclear on how many responses are necessary to respond satisfactorily. In 
terms of content, the test development team noted that items related to food chains tended to 
have mixed performance. Thus, future work will focus on providing resources and revisions to 
item writers to make the expectations for these items more explicit. 
 
Psychometric Modeling 
The psychometric modeling research conducted on the I-SMART pilot assessment data 
presents several avenues for future work. First, the current work used weakly informed priors for 
estimating the diagnostic models. It is possible that using empirical priors would improve the 
model estimation process. The research literature would benefit from work evaluating under 
what conditions empirical priors are the most helpful or appropriate, including sample size and 
model complexity.  
 
Second, the I-SMART pilot data were used to provide evidence supporting the structure of the 
developed learning maps. This was accomplished using diagnostic classification model 
framework described by Thompson and Nash (2019). Although the totality of evidence 
supported the defined structure, certain diagnostic models showed insufficient absolute model 
data fit. There are many reasons this could be the case. Because there were relatively small 
sample sizes, it is possible that there simply were not enough data to get reliable parameter 
estimates, even though the models converged. Thus, it is possible that regularizing priors could 
stabilize the estimates, leading to better model fit outcomes. Additionally, the models described 
in this report were restricted to single linkage level models. That is, the models were limited to 
3–5 nodes that were grouped together in the linkage level. However, the full learning map for 
each EE contains 9–20 tested nodes from three or four linkage levels. Future work may 
examine the feasibility of concurrently estimating all nodes within an EE. This is much more 
computationally intensive, but it could also provide node mastery probabilities for nodes from 
linkage levels on which the students were not assessed. That is, it may be possible to infer 
mastery status for untested nodes by propagating information from the tested nodes through the 
defined map structure. 
 
Learning Maps Evaluation 
Finally, the results from the evaluation of the map structure were used to examine possible 
misspecifications in the map structure for a single EE. Future work could take these empirical 
recommendations and apply them to the map structure to evaluate the impact of the changes on 
model fit and classification accuracy. Simulation studies may examine which type of 
modifications to the proposed map structure are most likely to result in improved model fit and 
student classification accuracy. 
 
Student Experience 
While overall student mastery on the I-SMART assessments was low and teachers indicated 
that the assessment tasks were too difficult for most students, the majority of students gave 
positive self-evaluations of their performance and were interested and engaged in the 
assessments. These findings may be due to the innovative features (wonder questions and 
choice options) included in the I-SMART testlets. Future research should further explore student 
experience taking tests that include specific features designed to increase engagement, even if 
these features do not improve test performance. These features have great potential to activate 
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students’ prior knowledge and foster a greater sense of agency and self-efficacy while 
completing assessments. 
 
The results also suggest that student choice is an important area for future research. Choice-
making is a test-taking skill that students can be taught, and there is a need to help teachers 
understand the intent of choice-making in assessment so they can help students get beyond 
low-level binary choice-making. Students should be taught to make choices based on their prior 
knowledge so that the choices they make give them the greatest chances of successful 
performance. 
 
In addition, in this pilot study, the choice options were always presented in the same positions 
(e.g., if the choice options were cat and bear, the cat was always presented first and the bear 
was presented second). Future research using choice options should counterbalance the 
position of the choice items so that it is possible to distinguish students’ choice of content from 
the position (first or second) because some students in the population may have a tendency to 
always select the last choice option.  
 
Finally, there were many factors impacting student engagement and performance on the I-
SMART assessments, including students’ complexity band, their opportunity to learn the content 
on the assessments, and their teachers’ perceptions, experiences, and administration load. The 
pilot study findings revealed that students’ opportunity to learn the content of the I-SMART 
assessments was relatively low. Future research should further investigate students’ 
engagement, interest, and access at lower complexity bands and the impact of targeted teacher 
professional development focusing on how to teach science to the expectations specified by the 
Next Generation Science Standards.  
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Appendix A 
Example Pilot Test Administration 
 
 

 
 
Example pilot test administration for a fifth grade primary population student  
 
 
 
 

 
 
Example pilot test administration for an eighth grade secondary population student 

Complexity Band 
Assignment

• Based on survey 
describing student 
skills

• Assigned to Band 1

Testlet 1

• EE.5.PS1-3
• Initial Level
• 14 items on 4 science 
nodes

• Choice, wonder, and 
self-evaluation items

• Brief embedded 
teacher survey

Testlet 2

• EE.5.PS1-3
• Prescursor Level
• 16 items on 4 science 
nodes

• Choice, wonder, and 
self-evaluation items

• Brief embedded 
teacher survey

Final Survey

• Completed by 
teacher

Grade Level 
Assignment

• Based on Qualtrics 
screening survey

• Assigned to High 
School grade band

Testlet 1

• EE.HS.LS2-2
• Target Level
• 14 items on 4 science 
nodes

Testlet 2

• EE.HS.ESS3-3
• Target Level
• 14 items on 4 science 
nodes

Final Survey

• Completed by 
teacher
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Appendix B 
Proportion of Mastery for Each Node by Linkage Level and Choice Item 

Linkage 
level Choice Item Node Choice n Proportion 

Initial  1 F-66 Forest 57 0.12 
Initial  1 F-66 Ocean 50 0.26 
Initial  1 SCI-315 Forest 57 0.21 
Initial  1 SCI-315 Ocean 50 0.36 
Initial  1 SCI-501 Forest 57 0.11 
Initial  1 SCI-501 Ocean 50 0.18 
Initial  1 SCI-527 Forest 57 0.23 
Initial  1 SCI-527 Ocean 50 0.26 
Initial  2 F-121 Beach 83 0.23 
Initial  2 F-121 Park 46 0.28 
Initial  2 SCI-597 Beach 83 0.06 
Initial  2 SCI-597 Park 46 0.15 
Initial  2 SCI-598 Beach 83 0.17 
Initial  2 SCI-598 Park 46 0.13 
Initial  2 SCI-614 Beach 83 0.16 
Initial  2 SCI-614 Park 46 0.24 
Initial  3 F-77 Bear 66 0.62 
Initial  3 F-77 Cat 84 0.52 
Initial  3 SCI-317 Bear 66 0.33 
Initial  3 SCI-317 Cat 84 0.27 
Initial  3 SCI-326 Bear 66 0.45 
Initial  3 SCI-326 Cat 84 0.44 
Initial  3 SCI-666 Bear 66 0.09 
Initial  3 SCI-666 Cat 84 0.10 
Initial  4 F-66 Farm 158 0.54 
Initial  4 F-66 Park 74 0.57 
Initial  4 SCI-313 Farm 158 0.67 
Initial  4 SCI-313 Park 74 0.57 
Initial  4 SCI-314 Farm 158 0.60 
Initial  4 SCI-314 Park 74 0.62 
Initial  4 SCI-315 Farm 158 0.58 
Initial  4 SCI-315 Park 74 0.51 
Initial  5 F-105 House 189 0.74 
Initial  5 F-105 Park 200 0.65 
Initial  5 SCI-117 House 189 0.32 
Initial  5 SCI-117 Park 200 0.36 
Initial  5 SCI-119 House 189 0.58 
Initial  5 SCI-119 Park 200 0.51 
Initial  5 SCI-151 House 189 0.50 
Initial  5 SCI-151 Park 200 0.44 
Initial  6 F-75 House 99 0.10 
Initial  6 F-75 School 145 0.33 
Initial  6 SCI-117 House 99 0.19 
Initial  6 SCI-117 School 145 0.59 
Initial  6 SCI-119 House 99 0.28 
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Linkage 
level Choice Item Node Choice n Proportion 

Initial  6 SCI-119 School 145 0.66 
Initial  6 SCI-151 House 99 0.52 
Initial  6 SCI-151 School 145 0.78 
Distal  7 SCI-497 Tiger 213 0.14 
Distal  7 SCI-497 Whale 136 0.12 
Distal  7 SCI-501 Tiger 213 0.34 
Distal  7 SCI-501 Whale 136 0.37 
Distal  7 SCI-661 Tiger 213 0.64 
Distal  7 SCI-661 Whale 136 0.46 
Distal  7 SCI-80 Tiger 213 0.08 
Distal  7 SCI-80 Whale 136 0.04 
Distal  8 SCI-598 Beach 143 0.29 
Distal  8 SCI-598 Mountain 138 0.22 
Distal  8 SCI-599 Beach 143 0.27 
Distal  8 SCI-599 Mountain 138 0.11 
Distal  8 SCI-600 Beach 143 0.04 
Distal  8 SCI-600 Mountain 138 0.07 
Distal  8 SCI-601 Beach 143 0.49 
Distal  8 SCI-601 Mountain 138 0.46 

Precursor 9 SCI-119 House 256 0.20 
Precursor 9 SCI-119 Park 228 0.17 
Precursor 9 SCI-121 House 256 0.28 
Precursor 9 SCI-121 Park 228 0.07 
Precursor 9 SCI-130 House 256 0.19 
Precursor 9 SCI-130 Park 228 0.14 
Precursor 9 SCI-27 House 256 0.34 
Precursor 9 SCI-27 Park 228 0.24 
Precursor 10 SCI-573 Camping 120 0.16 
Precursor 10 SCI-573 Picnic 112 0.12 
Precursor 10 SCI-574 Camping 120 0.27 
Precursor 10 SCI-574 Picnic 112 0.23 
Precursor 10 SCI-601 Camping 120 0.14 
Precursor 10 SCI-601 Picnic 112 0.15 
Precursor 10 SCI-643 Camping 120 0.38 
Precursor 10 SCI-643 Picnic 112 0.21 
Precursor 11 SCI-119 Bread 59 0.44 
Precursor 11 SCI-119 Cookies 285 0.55 
Precursor 11 SCI-121 Bread 59 0.32 
Precursor 11 SCI-121 Cookies 285 0.54 
Precursor 11 SCI-35 Bread 59 0.12 
Precursor 11 SCI-35 Cookies 285 0.15 
Precursor 11 SCI-804 Bread 59 0.75 
Precursor 11 SCI-804 Cookies 285 0.68 
Precursor 12 SCI-309 Meadow 75 0.27 
Precursor 12 SCI-309 Pond 115 0.22 
Precursor 12 SCI-313 Meadow 75 0.20 
Precursor 12 SCI-313 Pond 115 0.14 
Precursor 12 SCI-326 Meadow 75 0.12 
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Linkage 
level Choice Item Node Choice n Proportion 

Precursor 12 SCI-326 Pond 115 0.10 
Precursor 12 SCI-8 Meadow 75 0.04 
Precursor 12 SCI-8 Pond 115 0.04 
Precursor 13 SCI-515 Forest 293 0.09 
Precursor 13 SCI-515 Pond 142 0.02 
Precursor 13 SCI-528 Forest 293 0.05 
Precursor 13 SCI-528 Pond 142 0.04 
Precursor 13 SCI-660 Forest 293 0.20 
Precursor 13 SCI-660 Pond 142 0.15 
Precursor 13 SCI-80 Forest 293 0.18 
Precursor 13 SCI-80 Pond 142 0.11 
Precursor 14 SCI-313 Arctic 153 0.38 
Precursor 14 SCI-313 Lake 171 0.11 
Precursor 14 SCI-324 Arctic 153 0.13 
Precursor 14 SCI-324 Lake 171 0.07 
Precursor 14 SCI-37 Arctic 153 0.22 
Precursor 14 SCI-37 Lake 171 0.14 
Precursor 14 SCI-474 Arctic 153 0.18 
Precursor 14 SCI-474 Lake 171 0.05 
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Appendix C 
Nodes Outside of the Ideal Range in the Probability of a Correct Response, Discrimination, and 
Base Rate, by Essential Element and Linkage Level  
 

Essential Element - Linkage Level -node Masters Non-masters Discrimination Base rate 
5.LS2-1     
     Precursor     
          SCI-326 .81 .35 .46   .22* 
          SCI-8   .43* .29   .13* .48 
          SCI-313 .86 .32 .54   .23* 
     Target     
          SCI-311   .45* .30   .15* .46 
          SCI-309 .85   .47*   .38* .37 
          SCI-307 .73 .36   .37* .52 
5.PS1-3     
     Precursor     
          SCI-121 .64 .25   .39* .39 
          SCI-130 .93 .33 .60   .21* 
     Target     
          SCI-155 .71 .34   .37* .48 
          SCI-804 .50 .36   .14* .50 
          SCI-121 .77   .40*   .37* .51 
MS.LS2-2     
     Precursor     
          SCI-324 .82 .34 .48   .15* 
     Target     
          SCI-656 .81   .43*   .37* .36 
          SCI-518 .77   .47*   .30* .45 
          SCI-481 .59   .40*   .18* .45 
MS.PS1-2     
     Precursor     
          SCI-35 .92 .32 .60   .15* 
     Target     
          SCI-142 .66 .32   .34* .53 
          SCI-214 .70 .33   .37* .59 
          SCI-804 .69   .52*   .17* .49 
          SCI-189 .78   .46*   .32* .48 
HS.ESS3-3     
     Initial      
          SCI-614 .68 .04 .64   .24* 
          SCI-597 .73 .07 .67   .18* 
          SCI-598 .78 .06 .72   .19* 
     Distal      
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Essential Element - Linkage Level -node Masters Non-masters Discrimination Base rate 
          SCI-600 .73 .25 .48   .18* 
     Precursor     
          SCI-574 .76   .41*   .35* .49 
          SCI-573 .83 .37 .46   .19* 
     Target     
          SCI-96 .71   .41*   .30* .46 
          SCI-95   .45* .30   .15* .47 
          SCI-94 .67 .37   .29* .57 
          SCI-643 .66 .29   .38* .51 
HS.LS2-2     
     Initial      
          SCI-501 .81 .06 .76   .21* 
     Distal      
          SCI-80 .72 .32 .40   .21* 
          SCI-497 .90 .35 .56   .14* 
     Precursor     
          SCI-528 .74 .33 .41   .14* 
          SCI-660 .88 .38 .50   .22* 
          SCI-515   .48* .34   .14* .47 
     Target     
          SCI-76 .61   .41*   .19* .53 
          SCI-550 .63 .26   .37* .59 
          SCI-554 .61 .26   .35* .38 

* Indicates the estimate is outside of the ideal range. 
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Appendix D 
Node Mastery by Grade Band 
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Node Mastery by Essential Element 
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Node Mastery by Linkage Level and Grade Band 
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Node Mastery by Domain and Grade Band 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	List of Tables
	List of Figures
	Overview
	Introduction
	Pilot Study Goals and Research Questions

	I-SMART Assessment Design, Pilot Design & Administration 
	Assessment Design
	Learning Map Neighborhoods
	Testlet Structure and Design

	Pilot Study Design 
	Student Populations
	Primary Population
	Secondary Population

	Available Accessibility Supports

	Pilot Administration
	Recruitment and Inclusion Criteria
	Primary Population
	Secondary Population
	Test Administrator Training



	Assessment Scoring
	Participants
	Student Demographics
	Teacher Experience
	Use of Accessibility Supports


	Item and Testlet Performance
	Node Mastery
	Administration Time
	Choice Items
	Distribution of Choice Items by Linkage Level and Choice Items
	Student Performance on Choice Paths
	Correlation Between Administration Time and Performance


	Wonder Questions
	Item Flagging Review

	Psychometric Model
	I-SMART Model Specification
	Model Calibration
	Model Estimation

	Model Fit
	Absolute Model Fit
	Evaluating the Fungibility Assumption
	Absolute Model Fit
	Relative Model Fit


	Calibrated Parameters
	Probability of Masters Providing Correct Response
	Probability of Non-Masters Providing Correct Response
	Item Discrimination
	Base Rate Probability of Mastery

	Reliability
	Mastery Assignment

	Empirical Map Validation
	Node Validation
	Correlations of Node Mastery
	Overlapping Node Consistency
	Overlapping Node Mastery

	Map Structures
	Patterns of Mastery Profiles
	Patterns of Mastery Assignment
	Patterns of Node Difficulty
	Evaluating Structure Misspecifications


	Evaluation of Student Experience
	Student Self-Evaluation and Testlet Performance
	Students’ Use of Accessibility Supports
	Teachers’ Perceptions of Students’ Experiences With the I-SMART Assessments
	Relationship of Teacher Perceptions With Student Performance

	Conclusions and Future Directions
	Research Question 1: How do item and testlet features impact item and testlet performance?
	Research Question 2: Which type of scoring model is optimal for the student response data collected from the assessments?
	Research Question 3: Do empirical data support the structure of the learning map models?
	Research Question 4: What are students’ and teachers’ perceptions of students’ experiences with the new testlets?
	Significance and Future Directions
	Test Development
	Psychometric Modeling
	Learning Maps Evaluation
	Student Experience


	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D

